
PRE-COMPUTED BRANCH “PREDICTION”

Lucian N. VINTAN*, Marius SBERA**, Adrian FLOREA*

* “Lucian Blaga” University of Sibiu, Computer Science Department, Sibiu, ROMANIA
E-mail: vintan@jupiter.sibiu.ro, aflorea@vectra.sibiu.ro

** “S.C. Consultens Informationstechnik S.R.L.” Sibiu, ROMANIA, E-mail: sbmarius@usa.net

Abstract: Through this paper we developed an alternative approach to the present – day two level dynamic branch
prediction schemes. Instead of predicting based on history information, we propose to pre - calculate the branch
outcome. A pre - calculated branch prediction (PCB) determines the outcome of a branch as soon as all of the branch’s
operands are known. The instruction that produced the last branch’s operand may trigger a supplementary branch
condition estimation and, after this operation, it correspondingly computes the branch outcome. This is cached in a
prediction table. The new proposed PCB algorithm clearly outperforms all the classical branch prediction schemes,
simulations on SPEC ‘95 and Stanford HSA benchmarks, proving to be almost perfect. Also, our investigations related
to architectural complexity and timing costs are quite optimistic, involving an original approach in branch prediction
field.

Keywords: Multiple Instruction Issue, Pipelining, Dynamic Branch Prediction, Speculative Execution, Execution Driven
Simulation, Performance and Complexity Evaluations

1. Introduction

Excellent branch handling techniques are essential for
current and future advanced microprocessors. These
modern processors are characterized by the fact that
many instructions are in different stages in the pipeline.
Instruction issue also works best with a large instruction
window, leading to even more instructions that are “in
flight” in the pipeline. However, approximately every
seventh instruction in an instruction stream is a branch
instruction which potentially interrupts the instruction
flow through the pipeline [4,5,6,7]. As the pipeline
depths and the issue rates increase, the amount of
speculative work that must be thrown away in the event
of a branch misprediction also increases. Thus,
tomorrow’s processors will require even more accurate
dynamic branch prediction to deliver their potential
performance [3,14,15,16,17].

Dynamic branch prediction forecast the outcome of
branch instructions at run-time. This forecast, or
prediction, may change for each occurrence of the
branch, even the dynamic context is the same. Dynamic
branch predictors are composed of a single level, such as
a classical Branch Target Cache (BTC), or even two
levels, such as the Two-Level Adaptive Branch
Predictors [8,9,10].

A BTC predicts (Taken/Not Taken and the
corresponding Target Address) on the overall past

behavior of the branch. In contrast, a Two-Level
Adaptive predictor bases its prediction on either global
history information or local history information. The first
level history records the outcomes of the most recently
executed branches (correlation information) and the
second level history keeps track of the more likely
direction of a branch when a particular pattern is
encountered in the first level history. Global schemes
exploit correlation between the outcome of the current
branch and neighboring branches that were executed
leading to the branch. Local schemes exploit the
outcome of the current branch and its past behavior.
Recently there has been interest in hybrid branch
predictors where the fundamental idea is to combine
different dynamic predictor schemes having different
advantages, in a run-time adaptive manner [13].

2. The Pre - Computed Branch Algorithm

We suggest through this paper an alternative approach to
the present – day dynamic branch prediction schemes.
Instead of predicting based on history information, we
propose to pre - calculate the branch outcome. A pre -
calculated branch prediction (PCB) determines the
outcome of a branch as soon as all of the branch
operands are known. This occurs when the last operand
of the branch’s instruction is produced at execution. The

instruction that produced the last operand may trigger
supplementary branch condition estimation and, after
this operation, it correspondingly computes the branch
outcome (Taken/Not Taken). Similarly to branch history
prediction schemes, branch information is cached into a
prediction table, as it will be further presented. Through
this method, excepted the first one, every instance of a
branch can be computed and therefore correctly
“predicted”, before their issue.

In our PCB study we used MIPS-I microprocessor’s
Instruction Set Architecture (ISA) since a branch
instruction has addressing modes with two register
operands and no immediate operands. Considering for
example the following MIPS –I code sequence:

ADD R9, R5, R7; //R9<-(R5) + (R7)

BNE R9, R8, offset; //if (R9!=R8) PC<-(PC) + offset

The first instruction (ADD) modifies the R9 content
and therefore it directly influences the branch condition.
That means that the ADD instruction will
correspondingly modify R9 content in the branch
prediction structures. After this operation the branch
prediction structure estimates the condition and, at the
moment when the branch instruction itself is
encountered, its behavior will be perfectly known.
Figure 1 depicts our new proposed branch prediction
scheme. It uses two tables: the PT (Prediction Table)
table and an extension of the register file called RU
(Register Unit). As the reader can see further, PC doesn’t
indexes the RU table. It is used for some associative
searches in PT table and also, in some certain cases, it
will be updating into the LDPC field. We mention that
the letters associated with the arrows in figures 1, 2 and
3 (a, b, c, d and e) represents sequential operations.

Figure 1. The new proposed prediction scheme. A) when a non-branch instruction is encountered; B) when a branch instruction is
encountered

Each entry in the PT table consists of:
Ø a TAG field (the branch’s PC high order bits)
Ø PC1 and PC2 – which are pointers to the last

branch’s operands producers (the PCs of the
instructions that produced the branch’s operands
values)

Ø OPC – the branch’s opcode
Ø nOP1 and nOP2 – the register names of the branch

operands
Ø PRED – the branch outcome (Taken or Not-Taken)

and a LRU field (Least Recently Used)
RU table maintains the register file meanings but

additionally, each entry, has two new fields named
LDPC and respectively RC.

Ø The “value” field contains the register data value
Ø LDPC – represents the most recent instruction label

(PC) that wrote in that register.
Ø The RC field – is a reference counter that is

incremented by one by each instruction writing in the
attached register and linked by every branch
instruction stored in PT table (therefore the
instruction’s label is necessary to be found in PC1 or
PC2 field). The RC field is decremented by one when
the corresponding branch instruction is evicted from
the PT table. Therefore, if the RC field attached to a
certain register is 0 it involves that in the PT table
there isn’t any branch having that register as a source
operand.

In the newly proposed PCB algorithm, the PC of
every non-branch instruction, that modifies at least one
register, is recorded into the LDPC field belonging to its
destination register. The first issue of a particular branch
in the program is predicted with a default value (Not
Taken). After branch’s execution, if the outcome was
taken, an entry in the PT table is inserted and the LRU
field is correspondingly updated. The newly added PT
entry fields are filled with the updated information from
the branch itself (PC into TAG, OPC, nOP1, nOP2) and
data from the RU table (LDPC into PC1 or PC2). Every
time after a non-branch instruction - having the
corresponding RC field greater than 0 - is executed, the
PT table is searched upon its PC, in order to find a hit
with the PC1 or PC2 fields (if RC=0, obviously it isn’t
any reason for searching the PT table). When a hit
occurs, the branch opcode stored in that PT line is
executed and the corresponding result (taken/not-taken)
is stored into the PRED bit. Next time when the program
reaches again the same branch, the outcome of the
branch is founded in the PT table, as it was previously
calculated, and thus its direction it is surely known
before branch’s execution. In this way the processor
knows for sure which of the program’s path should be
further processed. The only miss-predictions that may
arise are coming from the initial learning (so named
compulsory or cold miss-predictions) or from the fact
that PT table has a limited size and therefore capacity
miss-predictions may also occur and from exit loops
branches. However, recording every first instance of a
branch in the PT table (not only those with taken result)
will eliminate the exit loop miss-prediction source.

However, the designer must be very careful about the
pipeline timing. There are needed at least one and up to

three cycles, depending on the pipeline length and
structure, between the instructions that alter the registers
and the corresponding branch instructions. This is
because the branch may follow the instruction that
produces its operands too closely in the program flow
and thus the former instruction cannot finish its
execution properly. The branch instruction cannot start
its execution right away because it would trigger a Read
after Write (RAW) hazard and it cannot be used the
result from the prediction structure because it hasn’t
been yet calculated. So, we should postpone the branch
processing few cycles and allow the previous instruction
to finish and, after this, trigger the supplementary
comparison. The minimum number of cycles that should
separate the instruction that alter the registers from the
corresponding branch instruction we named, analogously
with the Branch Delay Slot term, PIDS (Producer
Instruction Delay Slot). In order to fill this PIDS we
propose some program scheduling techniques, that will
fill this PIDS when necessary, with control independent
instructions (statically or dynamically). This was proven
as being a feasible exciting solution, but we’ll not
focused on it during this work. Anyway, the PCB
structure will therefore only help in those cases where
the comparison (or equivalent) can be successfully
moved several instruction slots ahead of the branch
without increasing the length of the schedule. It must
therefore be combined with other more conventional
techniques. The proposed prediction technique is then
used if the comparison is far enough ahead, else
conventional prediction is used. Some previous valuable
work about filling the PIDS with control independent
instructions with very optimistic results and details could
be found in [18].

Figure 2. Example of the first instance of a particular branch; A), B) actions took when issuing non-branch instructions; C) actions
took before b1 branch execution

We illustrate the working of this scheme using the
example shown in Figure 2 and Figure 3. The Figure 2.A
shows the sequential actions took after the execution of
the instruction from “p1” address. The LDPC field
corresponding to the destination register (R1 here) is
filled with the instruction’s PC (p) (the number that
follows the PC label says that is the first encounter of
that instruction; next time it will be 2 and so on).
Because the RC field of the same register is 0 it means

we have completed our actions related to instruction “p”.
Similar actions are followed for the instruction having
the PC noted “c”. After decoding the “b” branch, the PT
table is searched for a hit on TAG, PC1, PC2 fields (in
the “b” set). Due to a miss (this being the first instance
of “b” branch) a default prediction is used. If after the
“p” instruction’s execution, its outcome is taken and a
new line in the PT table is added; also the LRU field is
correspondingly updated.

Figure 3. Example of the second instance of a particular branch; A), B) actions took when issuing non-branch instructions; C)
actions took before b2 branch execution

This time when the “p” instruction is issued again
(Figure 3.A) the RC field attached to R1 register is
greater then zero and the PT table is fully searched for a
hit on PC1 or PC2 field. A hit is obtained and it triggers
a supplementary branch execution (after obtaining the
operands values from RU) and the result (taken/not
taken) is correspondingly updated into the PRED field.
Similarly actions are presented in Figure 3.B for the
second issue of the “c” instruction. When the branch
itself, about we are talking, is issued (Figure 3.C) the PT
is searched into the “b” set. This time a hit occurs and
the “prediction” of the branch “b” is extracted from the
PRED field. This outcome is 100% accurate, because it
has been correctly calculated in the previous described

steps. For a more in depth understanding of the proposed
PCB algorithm, we have provided a pseudo-code
description in Appendix A (complete details could be
founded in [2]).

3. Complexity Costs Evaluations

The global performance of a branch prediction scheme
can be investigated from, at least, two points of view:
prediction accuracy (local performance) and respectively
architectural complexity (costs). The costs themselves
can be split in two parts: the table’s sizes and the time
spent to access them. In order to evaluate the time

corresponding to one branch prediction process (e.g.
tables searches, supplementary branch’s condition
execution, etc.), we defined the next time quotas:

TDM – time needed for one direct mapped table access
(RU)
TFA – time needed for one fully-associative table access
(PT)
TSA – time needed for one set-associative table access
(PT)
TEX – time spent for one supplementary branch
execution

Also we have considered:

NB – the number of branch instructions
NNB – the number of non - branch instructions
NNB = kN*NB, where kN is a statistical constant based on
some program profiling ≈ 7
NNBL – the number of non - branch instructions “linked”
(through the RC field) with a branch instruction
NNBL=kL*NB, where kL is a statistical constant based on
some program profiling ≈ 5
NNBEX – the number of non - branch instructions
followed by a “supplementary branch execution”
NNBEX =kex*NB, where kex is a statistical constant ≈ 1,3
(about 30% branches)

Now, the time spent in the branch prediction for one
branch is formed by:

A) Search time spent by a non - branch instruction
NNB*TDM – needed to check the RC field from RU
Every non - branch instruction that writes into a register
triggers a search into the PT table for a hit with PC1 or
PC2. To reduce these full table searches we have used
instead this direct mapped table access to check the RC
field (if this instruction is “linked”) and proceed to the
full table search only when the RC is not 0.

B) Search time and execution time needed by a “linked”
non - branch instruction
NNBL*TFA(in PT)+NNBEX*(TDM(in RU) + TEX), “linked”
instructions search the PT table. When a hit arises, the
operands values are taken from the RU table and an
execution follows (TEX)

C) Search time needed by a branch instruction
NB*(TDM(in RU)+TSA(in PT)), when a branch is encountered
a search in the PT table is performed to extract the
corresponding prediction computed before

The overall time needed for one branch prediction is:
T= NNB*TDM + NNBL*TFA+NNBEX*(TDM + TEX) +
NB*(TDM+TSA)
TPT = NB*(kN* TDM + kL*TFA+kEX*(TDM + TEX) +
TDM+TSA) (1.1)

The time costs presented above we think that it
should be necessary to be compared with a classic BTB
having the same number of rows and a fully associative
organization. For the BTB considered, the time needed
to predict a branch is reduced to search the BTB at every

branch instruction. So, the overall time in this case is
TBTB= NB*TFA (1.2)

Considering common sense values for constants
involved as: kN≈7, kL≈5, kex≈1,3 and TFA= 4 * TDM, TSA
= 1,2 * TDM, the (1.1) and (1.2) equations become:

TPT = NB* TDM * 30,5 +NB* TEX * 1,3 (1.1’)
TBTB= NB* TDM * 4 (1.2’)

At the first sight the time cost difference needed for
one branch may seem overwhelming, but we think that
other internal processes can hide some of the times from
TPT. So, the times wrote with italic font in the TPT
expression NB*(kN* TDM + kL*TFA+kEX) may overlap
with the next instruction processing or data reuse process
and the TPT expression becomes now:

TPT = NB*(kEX*(TDM + TEX) + TDM+TSA)

Using this new expression we have obtained:

TPT = NB* TDM * 3,5 +NB* TEX * 1,3 (1.1’’)
TBTB= NB* TDM * 4 (1.2’’)

Now the two expressions, in our opinion, are
relatively comparable as processor time spent.

As we have stated above, the actions expressed by
the times wrote with italic fonts in the TPT expression
may overlap with some other actions corresponding to
the same non-branch instruction. While the instruction is
executed (or even reused !) the RU table may be checked
for the RC field and on a hit the PT table searched for
PC1 or PC2 fields. All these operations can be done in
parallel because these actions do not depend on each
other, thus they are hidden into the real processor time
consumed. The part from the TPT expression that cannot
yet be hidden is that which express the times involved in
the supplementary branch execution: accessing the RU
table for branch’s operand values and the branch opcode
execution. It’s quite obvious that we cannot offset these
actions above the end of the current instruction’s
execution, when the instruction’s result is produced. In
place of trying to overlap these last actions with actions
over the current instruction we could overlap them with
the next instruction execution if they do not totally
depend on each other. For this purpose we defined an
average overlap probability (OP) which points out the
overlapping degree with the next instruction’s execution.
After this (1.1’’) and (1.2’’) expressions becomes:

TPT = NB* TDM * 3,5 +(1-OP)*NB* TEX * 1,3 (1.1’’’)
TBTB= NB* TDM * 4 (1.2’’’)

The improvement in prediction accuracy brought by
this scheme must be paid some way in costs. As we felt,
if timing costs can be partially reduced by hiding them,
the physical costs can not. Considering a register file RU
with 32 registers and a PT table with M (M = 2j) entries,
the total size, in bits, is:

DPT=M·[(32-j)/*TAG*/ + 2·32/*PC1 and PC2*/ +
5/*OPC*/ + 2·5/*nOP1 and nOP2*/ + 1/*PRED*/ +
2/*LRU*/] + 32·(32/*LDPC*/ + 2/*RC*/) =
= M·(114-j)+1088

For a corresponding BTB having the features
discussed above:

DBTB = M·[(32-j)/*TAG*/ + 2/*prediction bits*/ +
j/*LRU*/] = M·34

Considering tables (PT and BTB) with 1024 entries,
we have obtained:

DPT = 1024·(114-10)+1088=107584=105KBits and DBTB
= 1024·34=34KBits

4. Performance Evaluations through
Simulation

The result for this second part of the paper were gather
using a complex simulator built by the authors, on the
kernel of the SimpleScalar simulation tool-set [1], an
execution-driven simulator based upon the MIPS-I
processor’s ISA. The benchmarks used falls into two
categories: the Stanford HSA (Hatfield Superscalar
Architecture) benchmarks as described in [2, 4, 11, 16],
recompiled to run on SimpleScalar architecture and the
SPEC ‘95 benchmark programs [10] having as inputs,
the files listed in Table 1. The benchmarks were run for
maximum 500 millions instructions or to completion if
they were shorter.

Table 1. Benchmark programs and inputs
SPEC ‘95 benchmarks Stanford HSA benchmarks

Benchmarks Input Inst. Count executed Benchmarks Input Inst. Count executed
Applu applu.in 500000000 fbubble Null 875174
Apsi apsi.in 500000000 fmatrix Null 824443
Cc1 1stmt.i 500000000 fperm Null 581099
Compress9
5

bigtest.in 500000000 fpuzzle Null 25271829

Fpppp natoms.in 500000000 fqueens Null 365205
Hydro hydro2d.in 500000000 fsort Null 198305
Ijpeg vigo.ppm 500000000 ftower Null 459788
Li *.lsp 500000000 ftree Null 267642
Mgrid mgrid.in 500000000
Perl scrabbl.pl 500000000
Su2cor su2cor.in 500000000
Swim swim.in 500000000
Tomcatv tomcatv.in 500000000
Turb3d turb3d.in 500000000
Wave5 wave5.in 500000000

We performed several experiments to evaluate the
newly proposed scheme. For this we have used table
sizes of 128, 256, 512, 1024, 2048 entries having an
associativity degree of 4. The results obtained on our
PCB scheme were then compared with a BTB prediction
scheme having an equivalent number of entries and two
kinds of associativity degree: full associative and
respectively 4-way set associative. For PCB we
performed two experiments in order to evaluate the two
ways of adding new entries in the PT table. First way is

to add an entry in the PT table only if the branch was
taken. The politics adopted is to don’t fill the table with
branches that have a not-taken behavior (ANT=0). This
solution reduces capacity misses, but we will have
supplementary misses when the branch will be taken
(end loop misses). The other way (ANT=1) is to add
taken and not taken branches preventing the end loop
misses. Of course, this will have a big impact on
capacity misses when using small size tables.

0,92

0,94

0,96

0,98

1

64 128 256 512 1024 2048

PCB ANT=0

PCB ANT=1

Figure 4. PCB’s average ”prediction” accuracy obtained on Stanford benchmarks

0,7

0,75

0,8

0,85

0,9

0,95

1

32x4 64x4 128x4 256x4 512x4

PCB ANT=0

PCB ANT=1

Figure 5. PCB’s average ”prediction” accuracy obtained on SPEC ‘95 benchmarks

Inserting entries in the PT table only when really
necessary performs better on smaller tables because it
reduces the capacity misses. But on larger table sizes
where the capacity misses are not so frequent, adding
every entry in PT reduce the end loop misses. The next
experiment was to compare the newly proposed scheme
(PCB) with similar classical dynamic prediction
schemes. Figure 6 shows the amount of accuracy
brought by the PCB scheme over two BTB schemes. The

amount of accuracy brought by the PCB scheme
compared with a corresponding set associative BTB
scheme using SPEC ‘95 benchmarks, is about 11%. As
depicted in Figure 6, even with a BTB full-associative
the PCB scheme performs better. The difference of
accuracy between the PCB scheme and BTB schemes
are even greater when using the Stanford benchmarks,
about 18%, because these programs are more difficult to
predict than SPECs, using classical schemes.

0.7

0.75

0.8

0.85

0.9

0.95

1

32x4 64x4 128x4 256x4 512x4

PCB ANT=0

BTB set-assoc

BTB full-assoc

Figure 6. Average “prediction” accuracies obtained on SPEC ‘95 benchmarks

5. Conclusions and Further Work

The new proposed PCB algorithm outperforms clearly
all the branch prediction schemes because it pre-
computes the branch outcome before the branch will be
really processed. From the pure prediction accuracy
point of view this algorithm seems to be almost perfect.
Similarly to branch history prediction schemes, branch
information is cached into a prediction table. Through
this method, excepted the first one, every instance of a
branch can be computed and therefore correctly
“predicted”, before its issue. The improvement in
prediction accuracy brought by this scheme must be paid
some way in timing and costs. Unfortunately, if the
PCB’s timing can be partially reduced by hiding it
through some overlapping processes, the structural costs
can not be reduced so easy. So, a PCB prediction scheme
is about 105 KBits complex comparing with a full
associative BTB scheme having only 34 KBits
complexity at the same number of PT entries (1024 in
this case).

As a further work we intend to measure the average
PIDS (in cycles) based on SPEC ‘2000 benchmarks, and,
as a consequence, trying to develop a software scheduler

in order to fill – where it will be necessary - with some
branch condition independent instructions these PIDS.
Also we’ll try to analyze in more depth other
overlapping possibilities in order to reduce the PCB
timing and also investigate the integration of the PCB
scheme in some very powerful processor models, having
some advanced architectural skills like value prediction
and dynamic instruction reuse concepts.

Acknowledgments

This work was partially supported by two research
grants (CNCSIS 8/2001 and ANSTI CG 12/05.06.2001)
offered by Romanian Ministry of Education and
Research (M.E.C.). Also our gratitude to Professor
Gordon B. Steven and Dr. Colin Egan from the
University of Hertfordshire, England, for providing HSA
Stanford benchmarks and for their useful friendship and
support related to our Computer Architecture research
during many years.

APPENDIX A

We are using the following notations and abbreviations
in this annex:
PC – current instruction address
PC.nOP1 – register name for the first operand
corresponding to the current instruction
PC.nOP2 – register name for the second operand
corresponding to the current instruction
PC.OPCODE – instruction opcode corresponding to the
current instruction
dimSet – the number of entries in a set
dimPT – the total number of PT entries
PCm-1..0 – Least Significant m Bits of the PC
PT (Prediction Table) – set-associative organization after
TAG and fully-associative after PC1 and PC2
To implement the PCB algorithm we have used the
following helper functions:
- FOUND(j) - tests if a previous search in the PT table

finished with success or not
- FIND_PT_ENTRY - it searches the PT table, in the

PC's corresponding set, for a hit on the PC and PC1

and PC2 fields. When a hit occurs it returns the index
of that entry in the PT table otherwise -1.

- ADD_PT_ENTRY - records a new entry in the PT
table. The entry to be filled is selected using the
FREE_PT_ENTRY function. If we had R0 as
operand we will perform no decrementing because
for the R0 register is useless to consider a RC field
(there is no instruction to have R0 register as
destination). Now we can update the entry with the
new data (TAG, PC1, PC2, nOP1, nOP2, OPC).
Finally we have to link this entry with the
corresponding operands by incrementing the RC field
of those registers.

- FREE_PT_ENTRY - Its aim is to find a suitable
entry in the PT table to be, first, evicted and then in
that position to add a new entry.

- SCH_and_UPD_PT_TABLE - searches the entire PT
table for a hit in the PC1 or PC2 fields. When a hit
occurs the data stored into that entry (OPC, nOP1,
nOP2) is used to execute a supplementary conditional
operation. The result is then stored back in the PRED
field of the same entry.

START:
0. FETCH_INSTR
1.DECODE_INSTR
2. IF isBRANCH(PC) THEN //this is a branch
3. IF FOUND(FIND_PT_ENTRY(PC)) THEN
4. PREDICTION=PT[FIND_PT_ENTRY(PC)].PRED //100% accuracy
5. ELSE
6. PREDICTION=NotTaken //default prediction
7. IF EXEC_BRANCH=TAKEN THEN
8. ADD_PT_ENTRY(PC)
9.ELSE //not a branch instruction
10. RD.REGVAL=EXEC_INSTR //RD-destination register for the current instruction
11. RD.LDPC=PC
12. if RD.RC >0 THEN
13. SCH_and_UPD_PT_TABLE(PC) //search the whole PT table for PC1=PC or PC2=PC

//on hit, update the prediction field of those entries
14. PC=PC+offset
15. [GOTO START]

Next we show the functions implementation

FOUND(j)
IF j<0 THEN

RETURN FALSE
ELSE

RETURN TRUE
END //FOUND

//searches for an entry in the PC set with (TAG=PC) and (PC1=PC.nOP1) and (PC2=PC.nOP2)
FIND_PT_ENTRY(PC)

[stSet=dimSet*PCm-1..0]′ //first entry in the PC set
[endSet=dimSet*(PCm-1..0+1)]′ //first entry in the PC+1 set
WHILE stSet < endSet DO //all this searches overlap

IF (PT[stSet].TAG=PC) AND (PT[stSet].PC1=RU[PC.nOP1].LDPC) THEN
IF NOT PC.OP2 THEN //there is no second operand

RETURN stSet
ELSE //there is a second operand

IF (PT[stSet].PC2=RU[PC.nOP2].LDPC) THEN
RETURN stSet

stSet++

//end while
RETURN -1

END //FIND_PT_ENTRY(PC)

//adds an entry in the PT table
ADD_PT_ENTRY(PC)

IF PT[FREE_PT_ENTRY(PC)].nOP1 > 0 AND //if this PT entry was taken and nOP1
is not R0

RU[PT[FREE_PT_ENTRY(PC)].nOP1].RC > 0 THEN //don’t go below 0
RU[PT[FREE_PT_ENTRY(PC)].nOP1].RC-- //dec the old refcount

IF PT[FREE_PT_ENTRY(PC)].nOP2 > 0 AND RU[PT[FREE_PT_ENTRY(PC)].nOP2].RC > 0 THEN
RU[PT[FREE_PT_ENTRY(PC)].nOP2].RC-- //dec the old refcount

PT[FREE_PT_ENTRY(PC)].TAG=PC
PT[FREE_PT_ENTRY(PC)].PC1=RU[PC.nOP1].LDPC
PT[FREE_PT_ENTRY(PC)].nOP1=PC.nOP1
IF PC.OP2 THEN

PT[FREE_PT_ENTRY(PC)].PC2=RU[PC.nOP2].LDPC
PT[FREE_PT_ENTRY(PC)].nOP2=PC.nOP2

ELSE
PT[FREE_PT_ENTRY(PC)].PC2=-1
PT[FREE_PT_ENTRY(PC)].nOP2=-1

PT[FREE_PT_ENTRY(PC)].OPC=PC.OPCODE
RU[PT[FREE_PT_ENTRY(PC)].nOP1].RC++ //inc the new refcount
IF PC.OP2 THEN

RU[PT[FREE_PT_ENTRY(PC)].nOP2].RC++ //inc the new refcount
END //ADD_PT_ENTRY

//full PT table search for PC in PC1 or PC2 fields
SCH_and_UPD_PT_TABLE(PC)

[j=0]
//this long time searches may overlap with EXEC_INSTR or data reuse process
WHILE j<dimPT DO

IF (PT[j].PC1=PC) OR (PT[j].PC2=PC) THEN
PT[j].PRED=EXEC(PT[j].OPC, RU[PT[j].nOP1].REGVAL,

RU[PT[j].nOP2].REGVAL)
j++

END //SCH_and_UPD_PT_TABLE

References

[1] The SimpleScalar Tool Set. Technical Report CS-TR-
96-1308, University of Wisconsin-Madison, July, 1996
(www.cs.wisc.edu/~mscalar/simplescalar.html)

[2] M. Sbera – Some Contributions in Branch Prediction
Research (in Romanian, L. Vintan - supervisor), MSc
Thesis, July, 2001

[3] B. Calder, D. Grunwald, D. Lindsay - Corpus-Based
Static Branch Prediction, ACM Sigplan Notices, vol. 30,
No. 6, pages 79-91, June, 1995, ISBN 0-89791-697-2

[4] L. Vintan - Instruction Level Parallel Processors,
Romanian Academy Publishing House, Bucharest, 2000
(264 pp., in Romanian), ISBN 973-27-0734-8

[5] G. Steven, C. Egan, L. Vintan - Dynamic Branch
Prediction using Neural Networks, Proceedings of
International Euromicro Conference DSD '2001,Warsaw,
Poland, September, 2001

[6] G. Steven, C. Egan, W. Shim, L. Vintan - Applying
Caching to Two-Level Adaptive Branch Prediction,
Proceedings of International Euromicro Conference
DSD '2001, Warsaw, Poland, September, 2001

[7] C. Egan, G. Steven, L. Vintan - Quantifying the
Benefits of Multiple Prediction Stages in Cached Two
Level Adaptive Branch Predictors, Proceedings of
International Conference SBAC-PAD, Brasil, Braslia,
September, 2001

[8] S. Sechrest, C. Lee, Mudge T. - The Role of Adaptivity
in Two-level Adaptive Branch Prediction, 28th ACM /
IEEE International Symposium on Microarchitecture,
November 1995.

[9] T. Yeh, Y.N. Patt - Two-Level Adaptive Branch
Prediction, 24th ACM / IEEE International Symposium on
Microarchitecture, November 1991.

[10] T. Yeh, Y.N. Patt - Alternative Implementation of
Two-Level Adaptive Branch Prediction, 19th Annual

International Symposium on Computer Science, May
1995.

[11] G. Steven et al. - A Superscalar Architecture to
Exploit Instruction Level Parallelism, Microprocessors
and Microsystems, No 7, 1997.

[12] SPEC - The SPEC benchmark programs
(www.spec.org)

[13] W.F. Wong – Source Level Static Branch
Prediction, The Computer Journal, vol. 42, No.2, 1999

[14] J. Stark, M. Evers, Y. Patt - Variable Length Path
Branch Prediction, ASPLOS VIII 10/98, CA, USA,
1998

[15] M. Evers, S. Patel, R. Chappell, Y. Patt – An
Analysis of Correlation and Predictability: What Makes

Two Level Branch Prediction Work, ISCA, Barcelona,
June 1998

[16] L. Vintan, C. Egan - Extending Correlation in
Branch Prediction Schemes, Proceedings of 25th

Euromicro International Conference, Milano, Italy, 8-10
September, IEEE Computer Society Press, ISBN 0-
7695-0321-7, 1999

[17] L. Vintan – Towards a Powerful Dynamic Branch
Predictor, Romanian Journal of Information Science and
Technology (ROMJIST), vol.3, nr.3, pg.287-301, ISSN:
1453-8245, Romanian Academy, Bucharest, 2000

[18] Collins R. - Exploiting Parallelism in a Superscalar
Architecture, PhD Thesis, University of Hertfordshire,
U.K., 1996

