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Abstract: In our previously published research we discovesethe very difficult to
predict branches, called unbiased branches. Simeeoverall performance of modern
processors is seriously affected by mispredictienovery, especially these difficult
branches represent a source of important perforenpanalties. Our statistics show that
about 28% of branches are dependent on critical luiestructions. Moreover, 5.61% of
branches are unbiased and depend on critical Léaals|n the same way, about 21% of
branches depend on MUL/DIV instructions wherea$% are unbiased and depend on
MUL/DIV instructions. These dependences involve hhpgnalty mispredictions
becoming serious performance obstacles and casgjngicant performance degradation
in executing instructions from wrong paths. Therefdhe negative impact of (unbiased)
branches over global performance should be seyioatténuated by anticipating the
results of long-latency instructions, includingtical Loads. On the other hand, hiding
instructions’ long latencies in a pipelined supalac processor represents an important
challenge itself. We developed a superscalar &ctoite that selectively anticipates the
values produced by high-latency instructions. lis thiork we are focusing on Multiply,
Division and Loads with miss in L1 data cache, iempénting a Dynamic Instruction
Reuse scheme for the MUL/DIV instructions and apsanliast Value Predictor for the
critical Load instructions. Our improved superscalhitecture achieves an average IPC
speedup of 3.5% on the integer SPEC 2000 benchmair28.6% on the floating-point
benchmarks, and an improvement in energy-delayysto(EDP) of 6.2% and 34.5%,
respectively. We also quantified the impact of daveloped Selective Instruction Reuse
and Value Prediction techniques in a simultaneoultithreaded architecture (SMT) that
implies per thread Reuse Buffers and Load ValualiBtien Tables. Our simulation
results showed that the best improvements on tHeCSRteger applications have been
obtained with 2 threads: an IPC speedup of 5.958@arEDP gain of 10.44%. Although,
on the SPEC floating-point programs, we obtaines liighest improvements with the
enhanced superscalar architecture, the SMT withr@atls also provides an important
IPC speedup of 16.51% and an EDP gain of 25.94%.

Keywords: superscalar architecture, SMT architecture, dynanstuction reuse, load
value prediction, speculative execution, power ocamsion

1. Introduction

In our previous work, we show that unbiased braschee characterized by low

prediction accuracies (at average about 70%),pews/e of the prediction information
type used in the state-of-the-art branch predidtgns06, Oan06, Gel07, Vin08]. Since



the overall performance of modern superscalar gsms is seriously affected by
misprediction recovery, these difficult branchegresent a source of important
performance penalties. As we pointed out in [Gel@8]}68% of branches are dependent
on critical Load instructions (Loads with miss retL2 data cache that reach the head of
the ROB), and 5.61% are unbiased and dependent pmevéously committed critical
Load instruction. Furthermore, 21.48% of branchepethd on MUL/DIV instructions
whereas 3.76% are unbiased and depend on MUL/Dd¥uations. These dependences
involve high-penalty mispredictions becoming sesiperformance obstacles and causing
significant performance degradation in executingtrirctions from wrong paths.
Therefore, the negative impact of unbiased branahes the global performance should
be seriously attenuated by anticipating the resolltfong-latency instructions. On the
other hand, hiding instructions’ long latencies anpipelined superscalar processor
represents an important challenge itself.

Our main objective is to develop a superscalar icture that selectively
anticipates the values produced by high-latencyrunsons. We will focus on Multiply,
Division and Loads with miss in the L1 data cachee reusability degree of MUL and
DIV instructions, measured with an unlimited ReUsdble, was 28.9% on the integer
benchmarks and 61.9% on the floating-point benchksmarhese instructions would be
solved by a Dynamic Instruction Reuse scheme. Eneability degree of Load values
was 77.4% on the integer benchmarks and 76.4% enfltating-point benchmarks
[Gel08]. However, an additional Reuse Buffer foraoValue (Data) Reuse is not
necessary, because a similar reuse mechanisne&lglprovided by the existing L1 and
L2 data caches. Therefore, the Load instructioris miss in the L1 data cache (selective
approach) would be solved through value prediction.

As a final objective of our research, we quantife impact of our developed
Selective Instruction Reuse and Value Predictionhngues in a Simultaneous
Multithreaded Architecture that involves per thrdaeluse Buffers (RB) and Load Value
Prediction Tables (LVPT). We measure the IPC amddynamic power consumption of
the proposed SMT architecture by varying the nunafehreads. Also, we evaluate, for
different number of threads, the IPC speedup ardEbP gain of a SMT architecture
enhanced with Selective Instruction Reuse and VRhegliction against a classical SMT
architecture.

The organization of the rest of this paper is dovis. In Section 2, we review
related work in the fields of dynamic instructioguse and value prediction. Section 3
presents the simulation methodology. Section 4 rdest the two techniques that we
implemented for anticipating the results of lontgfecy instructions. In Section 5 we
illustrate the experimental results obtained usiuy developed simulator. The last
Section suggests directions for future works anttkales the paper.

2. Related Work

Sodani and Sohi in [Sod97] firstly introduced tlidea of dynamic instruction reuse.
Dynamic instruction reuse is a non-speculative aaicchitectural technique that exploits
the repetition of dynamic instructions. The mairaddis that if an instruction or an
instruction chain is reexecuted with the same in@lties, its output value will be the
same. The authors introduced different schemesihattain the inputs and the results of



previously executed instructions in a hardware cttme called Reuse Buffer. With
instruction reuse, the number of executed dynanstructions is reduced and the critical
path might be compressed. According to the authemsiulations on the SPEC95
benchmarks, at average 26% of dynamic instructamasreusable. This quite high reuse
degree is understandable taking into account #sat than 20% of the static instructions
are generating more than 90% of the repeated dynamsiructions. These useful
statistics are qualitatively justified due to tlaetfthat programs are written in a compact
(loops, recurrence, inheritance, etc.) and gemaacner (the programs have to operate on
a variety of data structures). There are some itapodifferences between our approach
and Sodani’'s. We reuse only MUL and DIV instruciand, although we use the same
S, scheme that track operand values for each ingtryatur scheme does not require all
fields of Sodani’s gscheme. Since we do not reuse Load instructioegewounce to the
address and memvalid fields. This reduces the hardware cost with bénefn power
consumption, too. Another difference refers to thement when the instructions are
reused: in contrast with Sodani’s approach, thesReBuffer (RB) is accessed in our
architecture during thissue stage, because most of the MUL/DIV instructiongnid in
the RB in thedispatch stage do not have their operands ready.

Richardson introducebhstruction Memoization [Ric93], a technique that consists
in storing the inputs and outputs of long-latenpgrations and reusing the output if the
same inputs are encountered again. The memo wblecessed in parallel with the first
computation cycle, and the computation halts ince of hit. Thus, memoing reduces a
multi-cycle operation to one-cycle when there isitan the memo table. In [Bro00] the
authors proposed a memoing technique in orderve pawer. Brooks et al. used memo
tables in parallel with the floating-point and igée multipliers, the floating-point adder,
and the floating-point divider. Their experimentasults on SPEC92 benchmarks show
an average speedup of 1.7% and an average poweniement of 5.4%.

Citron and Feitelson in [Cit02] compare differenstruction reuse techniques,
includingInstruction Reuse (IR) andlnstruction Memoization (IM). The authors splat the
Lookup Table into several smaller tables for flogtpoint instructions, Loads, multi-
cycle integer instructions (multiplication and divin) and all other single-cycle
instructions. Each table contained 256 entries.yThsed IM only for multi-cycle
operations. The evaluation results (reuse degrdespaedup) obtained on the SPEC95
benchmarks show that only floating-point applicasi@an benefit from instruction reuse.

Golander and Weiss present in [Gol07] differentrungion reuse methods for
Checkpoint Processors. In checkpoint microarchitest a misspeculation initiates the
rollback, in which the latest safe checkpoint pd#cg the point of misprediction is
recovered, and the reexecution of the entire coetgment between the recovered
checkpoint and the mispredicting instruction (siecreissue). The authors proposed
two instruction reuse methods for normal executemd other two methods for
reexecution after a misprediction. Thiivial method identifies trivial arithmetic
operations having one of the inputs a neutral eltme both operands with the same
magnitude. The hardware for detecting trivial cotafions and selecting the result
consists in comparators for the input operands swldctors for the writeback. In our
simulator, we implemented th&ivial method proposed by Golander. TBeReuse
method uses a small fully associative reuse cashkoihg latency arithmetic operations.
As the authors are showing, an 8-entry cache ificerit for reusing most of the



available results. ThebckReuse method is used for all instruction types from saxed
paths, excepting control-flow instructions. Finalthe RockBr method is used for the
branch instructions from reexecuted paths. Theerstrsicture maintains only the branch
outcome and relies on the BTB for the branch tasgitress. A reuse approach that
combines all four methods briefly presented abmauires an area of 0.87 rrand
consumes 51.6 mW. It achieves average instrucpensgycle (IPC) speedup of 2.5% for
the SPEC 2000 integer benchmarks, of 5.9% for tREC 2000 floating point
benchmarks, and an improvement in energy-delay yotoadf 4.80% and 11.85%,
respectively.

Lipasti et al. [Lip96] firstly introduced Value Lafity as the third facet of the
statistical locality concepts used in computer pagiing. They defined the value locality
as “the likelihood of the recurrence of a previgesten value within a storage location
inside a computer syst¢mMeasurements using SPEC95 benchmarks show thae v
locality on Load instructions is about 50% usingistory of one (producing the same
value like the previous one) and 80% using a hystdrl6 previous instances. Based on
the dynamic correlation between Load instructiodradses and the values the Loads
produce, Lipasti et al. proposed a new data-speeelanicro-architectural technique
entitled Load Value Prediction that can effectively exploit value locality. Loa@lue
prediction is useful only if it can be done accalgaftsince incorrect predictions can lead
to increased structural hazards and longer Loaghdgt Starting by Loads’ dynamic
behavior and classifying them separately (unpradlet predictable and constants), it can
be extracted the full advantage of each casenltbeaavoided the cost of mispredictions
by detecting the unpredictable Loads and the costemory access through identifying
highly predictable Loads. An important differenegveeen our value prediction approach
and Lipasti's is that we selectively predict Loaustructions predicting only those
generating a miss in L1 cache. Thus, we attenbiatenispredictions cost and reduce the
hardware cost of the speculative micro-architectiiereover, since less hardware is
required, there is also less power consumption.

Mutlu et al. presented in [Mut06] a new hardwaghteque namedddress-value
delta (AVD) prediction, able to parallelize dependent cache misses. ©hsgrved that
some Load instructions exhibit stable relationstupsveen their effective addresses and
data values, due to the regularity of allocatimg&tres in the memory by the program,
which is sometimes accompanied by the regularitthenprogram’s input data. In order
to exploit these regular memory allocation patterie authors proposed an AVD
structure that maintains the Load instructions hgwa stable address-value difference
(delta). Each entry of the AVD table consists ia tbllowing fields:Tag (the upper bits
of the Load’s PC)AVD (the address-value delta corresponding to theoletrrence of
that Load) andConf (a saturating counter that records the confideiddv/D). The Conf
field is used to avoid predictions for Loads with @nstable AVD. If a Load instruction
having a stable AVD occurs with a cache miss, @& dalue is predicted by subtracting
the stable delta from its effective address. Thisdjgtion enables the preexecution of
dependent instructions, including Loads with cacties. The experimental results show
that integrating a 16-entry AVD predictor into ranahead processor improves the
average execution time by 14.3%, but only for paHitensive applications.

Liao and Shieh proposed in [Lia02] a new schemedbmbines value prediction
and instruction reuse. The main idea consists eédipting operand values if they are not



available and speculatively reusing instructionghié predicted operands match the
values from the Reuse Buffer (RB). Obviously, tberect path must be reexecuted in the
case of misprediction. If the operands of an irdiom are ready and their values match
the value fields of the corresponding RB entry, rémult is guaranteed to be correct, and
therefore the execution is non-speculative. Thaikitions on the SPEC95 benchmarks
showed that this scheme provides an average spe¢@u@.

In [Cha08] the authors proposed a hardware-basedochecalledearly load, in
order to hide the load-to-use latency (the latathey instructions wait for their operands
produced by Load instructions) with little additedrhardware costs. The key idea is to
make use of the time that instructions are waitmthe instruction queue to load the data
early, before the Loads are effectively executgdpte-decoding instructions during the
fetch stage. Thus, instead of using previous instanvefuds) of the current Load
instruction Chang et al. are using an earlier etegtzinstance (value) of the current Load
instance. In this way, the chance to be a corralctevseems to increase. They use a small
table, called Early Load Queue (ELQ) that recordad.instructions and the early loaded
data. The proposed scheme allows Load instructmitsad data from memory before the
execution stage. Obviously, a detection method assures dineeatness of the early
operation before the Load enters into the execigiage. If the corresponding ELQ entry
is valid in the Load’'slispatch stage, the execution of the Load instruction imgletely
avoided and all dependent instructions get the &tata the ELQ. Unfortunately this
method doesn’t work for out-of-order speculativehitiectures whereas our technique
does. Also, it works only for very small instructiqueues. The experimental results
showed that this scheme can achieve a performanpeovement of 11.64% on the
Dhrystone benchmark and 4.97% on th&Bench benchmark suite.

3. Smulation Methodology

We developed a cycle-accurate execution driven latmiu derived from the M-SIM
simulator [Sha05] supporting the unmodified, stdhclinked Alpha AXP binaries as
well as the power estimation as supplied by thetddatramework [Bro00]. M-SIM
extends the SimpleScalar toolset [Bur97] with aateimodels of the pipeline structures,
including explicit register renaming, and support the concurrent execution of multiple
threads. We modified M-SIM to incorporate our sBlecinstruction reuse and value
prediction techniques in order to measure theiveldPC speedup and relative energy-
delay product gain when the results of long-latensyructions are anticipated.

All simulation results are generated on the SPE@2fenchmarks [SPEC] and
are reported on 1 billion dynamic instructions pglking the first 300 million instructions.
For the superscalar architecture we evaluated Isitifig-point benchmarksagplu,
equake, galgel, lucas, mesa, mgrid) and seven integer benchmarks: computation intensi
(bzip, gce, gzip) and memory intensivargf, parser, twolf, vpr). In SMT mode, the M-
SIM runs multiple benchmarks as different threadgarallel. Therefore, we combined
benchmarks into groups of 2, 3 or 6 depending erstmulated SMT architecture. Thus,
we used bzp, gcc}, {gzip, parser}, {twolf, vpr}, {applu, equake}, { galgel, lucas},
{mesa, mgrid} for our SMT with 2 threads, Hzip, gcc, gzip}, { parser, twolf, vpr},
{applu, equake, galgel}, {lucas, mesa, mgrid} for the SMT with 3 threads, andbfip,



gce, gzip, parser, twolf, vpr}, { applu, equake, galgel, lucas, mesa, mgrid} for the 6-
threaded SMTTable 1 presents some important parameters ofrtindated architecture:

Execution unit Number of units | Operation latency
Execution ?ntALU . 4 1
L atencies intMULT /intDIV |1 3/20

fpALU 4 2

fpMULT / fpDIV 1 4/12

Super scalarity Fetch / Decode / Issue / Commit width = 4
Branch predictor | bimodal predictor with 2048 entries

Memory unit Access L atency
4-way associative L1 data cache, 32 KB 1 cycle

Cachesand — —

Memory 8-way associative unified L2 data caché,cycles

512 KB
Memory 100 cycles
Register File: 32 INT / 32 FP

Resources Reorder Buffer (ROB): 128 entries

L oad/Stor e Queue (L SQ): 48 entries

Table 1. Parameters of the simulated architecture

The power consumption measurements are generated as 80 nm CMOS
technology. Figure 1 presents the structure osimellator.

Power
Estimation

Hardware
Configuration : Cycle-Level [Hardware Access Counts *

Performance :
Simulator ! Performance
Estimation

A 4

SPEC ]
Benchmark

Figure 1. The structure of the simulator

As Figure 1 shows, the simulator generates botHopeance and power
consumption estimation. The detailed power modelingthodology, used in the
simulator, is presented in [Bro00]. The dynamic powconsumption in CMOS
microprocessors is defined as:

P, =CIV. @Llf 1)

whereC is the capacitance, generated usagti [Shi01], Vyq is the supply voltage, arid

is the clock frequency/yq andf depend on the assumed process technology. Thacti

factora indicates how often clock ticks lead to switchamdivity on average. The power

consumption of the modeled units highly dependshmninternal capacitances of the
circuits. From the capacitance point of view, thare three categories of architectural
structures: array structures, content-associatearmes) and complex logic blocks. The
first two categories are used to model the cadmesich predictors, the reorder buffer,



the register renaming table, and the register \ila@]e the last category is used to model
functional units.

For the energy measurements, we used the Energy-Peoduct, a widely used
metric [Gon96, Bro00, Gol07]:

EDP = Total Pozwer @)
IPC

The Energy-Delay Product (EDP) represents the gemeés total power, divided by the
squared IPC.

4. Anticipating Long-L atency Instructions Results
4.1. Selective Dynamic I nstruction Reuse

For the MUL and DIV instructions we will use the feuse scheme. The information
about instructions is maintained in a direct mappelse Buffer (RB). The RB is
accessed during thssue stage, because most of the MUL/DIV instructionsnid in the
RB during the dispatch stage do not have their ams ready (91.5% on the integer
benchmarks and 64.6% on the floating-point benchkg)arEach RB entry has the
following fields: Tag (the higher part of the PCH/1 andSV2 (the source values of the
MUL/DIV instruction), Result (the output value of the MUL/DIV instruction). $i& we
do not reuse Loads with this scheme, alddress andmem valid fields used in [Sod97]
are unnecessary. In this way, our implemented tsreicis simpler and more cost
effective (from hardware budget and power consusnpgoint of view) than the initial
scheme proposed by Sodani and Sohi.

S, Reuse Buffer (RB)
Tag | SV1| SV2| Result

PCof MUL/DIV ——

Figure 2. Reuse scheme for MUL & DIV instructions

If a certain MUL/DIV instruction is found in the RB& reuse test is generated. If
the actual operand values, taken from the ROB, mie SV1 and SV2 fields from the
selected RB entry, the instruction is not sent forectional unit, its result value being
already available for dependent instructions. Eveopn-reused MUL/DIV instruction
updates the RB in the commit stage: writes the ttag source values and the result into
the corresponding RB entry. From the power consiamppoint of view, the Reuse
Buffer was modeled as a cache array structure usieagsame power models that the
other array structures use. Obviously, the maineberof reusing long-latency
instructions consists in unlocking dependent irdioms (see Figure 3). In Figures 3 and



5, all stages excejixecute stage are a single cycle length; Ehecute stage has variable
length, depending upon the latency of the executisguction (see Table 1).

Fetch Decode | ssue Execute Commit

RB

Lookup (PC, V1, V2) Result (if hit)

Figure 3. Pipeline with Reuse Buffer (RB)

We also detected trivial operations implementirigannique firstly introduced in
[Ric93] by Richardson. We considered the followopgrations: V*0, V*1, 0/V, V/1 and
V/IV. A simple hardware scheme for detecting trivedmputations and selecting the
result is presented in [Gol07] and consists in carafrs for the input operands and
selectors for the write-back. If during tkespatch stage, a MUL instruction is detected
with an operand value of 0 or 1, the result is mlest by the detector, avoiding the
functional unit allocation and execution. In thengamanner, if a DIV instruction is
detected with the first operand being 0, the seapetand 1, or with identical operands,
the result is provided by the detector being thuglable at the end of the dispatch stage.
The Reuse Buffer is accessed during iksie stage for the reuse test only if the
MUL/DIV operation is not detected as being triviilathe dispatch stage.

4.2. Selective Load Value Prediction

We will integrate into our architecture a simplest.&alue Predictor used only for Loads
with miss in the L1 data cache (selective appraati)this way, the implemented
structure is more efficiently used; the collisioneamber will be lower against the
approach that predicts all Load instructions, hgviables of the same siz&he
information about Load instructions is maintained a direct mapped Load Value
Prediction Table (LVPT). The LVPT is accessed durthe issue stage, only if the
current Load instruction involves a miss in thedata cache (critical Load). Each LVPT
entry has the following fieldstag (the higher part of the PQJounter (a 2-bit saturating
confidence counter with twanpredictable and twopredictable states), and/alue (the
Load instruction’s result).

Load Value Prediction
Table (LVPT)

Tag | Counter | Value

PC of Load with miss
in L1 Data Cache

Figure 4. The Last Value Predictor architecture



In the case of a hit in the LVPT, the correspondioginter is evaluated. If the
confidence counter is in an unpredictable state Libad is executed without prediction.
Otherwise theValue from the selected LVPT entry is speculatively farded to the
dependent instructions. In tllemmit stage, when the real value is available, in tlee ca
of misprediction, a recovery is necessary in ortersquash speculative results and
selectively re-execute the dependent instructioits the correct values (see Figure 5).
This selectivereissuerequires a mechanism for propagating mispredictidarmation
through the data flow graph to all dependent imstons. We considered in our
simulations value prediction latency of one cyclad,ain the misprediction case, a
recovery taking 7 cycles.

Misprediction Recovery

Fetch Decode | ssue Execute » Commit

LVPT

If Load with miss Predicted Value

in L1 Data Cache

Figureb5. Pipeline with Load Value Predictor

During thecommit stage, every critical Load updates the LVPT: dah/Counter
field in the case of correct prediction or talue and theCounter fields in the case of
misprediction. In the miss case the LVPT, ffag and theValue are inserted into the
selected entry, and theounter is reset (strongly unpredictable state). From gheer
consumption point of view, the LVPT was modeledaasache array structure using the
same power models that the other array structiges u

5. Experimental Results

Figure 6 presents the reuse degrees obtained adgthvdahout detecting trivial operations
in the superscalar architecture.

70%
60% - §
50% - :
40% -
30% -
20% -
10% -

0% -

BINT -RB
OINT - RB & Trivial
BFP - RB
FP - RB & Trivial

Reuse Degree

RB entries

Figure 6. Reuse degrees obtained for different RB sizes avithwithout trivial operation
detection in the superscalar architecture



The RB provides on the integer benchmarks a reegeed of 17.2% with an RB of 1024
entries, compared with the reusability degree 09%8(the upper limit obtained with an
unlimited RB). It was more efficient for the floag-point benchmarks, where we
obtained a reuse degree of 54.8% with an RB of 2@d8Bies, compared with the
reusability degree of 61.9% (through an unlimiteB)RAs Figure 6 shows, trivial
operations detection improves significantly theseedegree.

Table 2 presents the reuse degrees, the IPC, amubther consumption obtained
with the superscalar architecture, on the integed dloating-point SPEC 2000
benchmarks, by using the Buse scheme together with the Trivial Operati@tebtor
for the MUL and DIV instructions. ThBeuse Degree columns represent the percentage
of reused MUL and DIV instructions across all thvalaated integer and floating-point
benchmarks. ThéPC represents the average instructions per cycle. RBePower
column shows the additional dynamic power dissighéethe RB for each evaluated size
in MW and in percentages reported to the total procgsseer.

RB entries SPEC2000 integer SPEC?2000 floating-point | RB Power
Reuse Degree[%] | IPC Reuse Degree [%] | IPC [mW] | [%]

0 (no RB) — 1.6857 —+ 2.0410 0 0.000
16 25.8 1.6881 36.8 2.0612 7.2 0.008
32 27.4 1.6862 37.8 2.0613 12.7 0.014
64 28.1 1.6862 40.5 2.0747 16.3 0.018
128 28.2 1.6867 42.5 2.0752 28.8 0.031
256 28.2 1.6867 45.8 2.0787 38.4 0.042
512 28.5 1.6862 50.6 2.0828 70.2 0.977
1024 29.0 1.6862 56.9 2.0863 99.6 0.109
2048 29.0 1.6862 62.8 2.0888 178.8 0.195

Table 2. Reuse degree, IPC and power consumption obtaiitedive superscalar architecture
using the RB and Trivial Operation Detector on $#EC2000 benchmarks

The very low IPC gain measured on the integer bmiacks is justified because
only about 11 million instructions were reused frantotal of 7 billion across all the
integer benchmarks. Moreover, reusing MUL/DIVs bbefimg to wrong speculated paths

frequently involves issuing some long latency LoaHisese critical instructions would
not be executed without successful reuse.
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Figure 7. Relative IPC speedup and relative energy-delagiuaribgain on the floating-point
benchmarks with RB and Trivial Operation Detecfiothe superscalar architecture
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Although the RB structure dissipates additional aiyic power, reusing long-
latency instructions increases the IPC and thesdfawers the total energy consumption
(see Figure 7). We determined the energy-delayyatofbr the superscalar architecture
without RB and for the architecture with RB of @ifént sizes. ThEDP Gain represents
the relative energy-delay product improvement swleRB size.

The speedup is insignificant in the case of thegar benchmarks, due to the
significantly lower number of MUL and DIV instruotis. Consequently, the energy-
delay product is better only for RB sizes betwedh dand 128 entries, but the
improvement is insignificant. These results areoncordance with Citron [Cit02] who
also remarked the poor evaluation results (reugeede and speedups) obtained on the
SPEC95 integer benchmarks. Therefore a significanefit of MUL/DIV instructions
reuse is achieved only for floating-point applioas.

Table 3 presents the prediction accuracy, the B, the power consumption
obtained by evaluating our developed superscalehnitacture with MUL/DIV Reuse
Buffer of 1024 entries and Trivial Operation Detedor the MUL and DIV instructions
and with Last Value Predictor for critical Load tinstions. ThePA columns represent
the prediction accuracy of critical Loads. TIRE represents the average instructions per
cycle. TheLVPT Power column shows the additional dynamic power dissigdiy the

LVPT for each evaluated size mW and in percentages reported to the total processor
power.

LVPT entries SPEC2000integer | SPEC2000 floating-point | LVPT Power

PA |PC PA IPC [mW] | [%]
0 (no RB, LVP — 1.6857 — 2.0410 D 0.000
16 94.0 1.7066 99.7 2.1878 6.4  0.007
32 93.5 1.7094 99.8 2.2338 87  0.009
64 92.6 1.7245 99.8 2.3538 14.6  0.016
128 91.0 1.7318 99.Y 2.3915 19.9  0.022
256 88.7 1.7351 99.5 2.4378 336 0.037
512 88.1 1.7387 99.8 2.448h 48.0  0.052
1024 87.1 1.7456 99.p 2.524{ 84.9  0.092
2048 87.2 1.7460 99.1 2.532D 128.1  0.139

Table 3. Prediction accuracy, IPC and power consumptioainbtl with the superscalar
architecture using an RB of 1024 entries, the @ti@peration Detector and the LVPT

Figure 8 presents the relative IPC speedup andelative energy-delay product
improvement for the integer and floating-point bemarks. We determined the energy-
delay product for the superscalar architecture ouithRB and LVPT and for the
architecture with a RB of 1024 entries and LVPTsddferent sizes. Th&DP Gain
represents the relative energy-delay product imgmmant for each LVPT size. As it can
be observed, the optimal LVPT size is 1024. Botk Ispeedup and EDP gain are
significantly higher on the floating-point benchiks@r compared to the integer
benchmarks. This difference occurs because the auofbcritical Loads is more than
twice higher in the floating-point benchmarks. Tdi#erence is further accentuated by
the percentage of predicted critical Loads (classifs predictable by LVPT confidence
counters) which is 85% on the floating-point benahks and only 40% on the integer
benchmarks [Gel08]. Finally, the difference is al@htly increased by the higher
prediction accuracy obtained on the floating-pbiemchmarks.
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Figure8. Relative IPC speedup and relative energy-delagiuariogain with the superscalar
architecture using a Reuse Buffer of 1024 entties Trivial Operation Detector, and the Load
Value Predictor

We also measured the memory traffic reduction aspdrcentage of correctly
predicted Loads reported to the total number of orgmaccesses. Our evaluations show
an average memory traffic reduction of 1.58% onitiveger benchmarks and of 10.93%
on the floating-point benchmarks, which are in @dence with our energy
consumption estimations.

The selective instruction reuse approach proposgdGblander and Weiss
(presented in paragraph 2) achieves an averagspB€lup of 2.5% on the SPEC 2000
integer benchmarks, of 5.9% on the floating poetdhmarks, and an improvement in
energy-delay product of 4.80% and 11.85%, respelgtitn comparison, our improved
superscalar architecture achieves an average IB€dsp of 3.5% on the integer SPEC
benchmarks, 23.6% on the floating-point benchmaaksl an improvement in energy-
delay product of 6.2% and 34.5%, respectively.

As a final objective of this research, we quandiftee impact of our developed
techniques for anticipating long-latency instrunto results in a simultaneous
multithreaded architecture that involves per thr&s and LVPTs. We measured the
IPC and the dynamic power consumption of the prepgdSMT architecture by varying
the number of threads. Figure 9 presents the IRGirsa by evaluating our developed
superscalar and SMT architectures with and withRetise Buffer and Load Value
Predictor. According to our previous results, wéroplly sized the RB and the LVPT to
1024 entries. The RB and LVPT structures improeelBC on all the evaluated general-
purpose applications within all architectural cguofiations (superscalar and SMT).
Therefore, we consider that the Worst Case Execdtime (WCET) is not increased by
our proposed techniques. As far as concern flogioigt benchmarks, the highest
improvement was obtained with one thread, and esitimber of threads grows, the IPC
improvement becomes lower. With fewer threads, tdme shared functional units (see
Table 1) are underused and therefore the Seledtisguction Reuse and Value
Prediction techniques have an important improvermpetgntial. With a higher number of
threads, the same ten functional units are higbbdwby the SMT engine, thus both the
instruction reuse and value prediction mechanisewoiming less important. Therefore,
especially on floating-point benchmarks, with dixelads we obtained the best IPC but
the lowest relative IPC speedup.
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Figure9. IPC obtained using the SMT architecture with aitieut RB & LVPT on the SPEC
2000 benchmarks

Finally, we evaluated, for different number of thas, the IPC speedup and the EDP gain
of a SMT architecture enhanced with Selective Utdion Reuse and Value Prediction

against a classical SMT architecture. In Figuretd® first and third bars represent the

EDP gains obtained with our superscalar (one thraad SMT architecture (2, 3 and 6

threads) on the floating-point and integer benchmiarespectively. The second and

fourth bars presents the IPC speedups achievedhdtiame architectures.
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Figure 10. Relative IPC speedup and EDP gain (enhanced SMdlassical SMT) by varying
the number of threads

As Figure 10 depicts, the RB and LVPT structurdsieaed IPC speedups and
EDP gains on all the simulated configurations. Dest improvements on the integer
benchmarks have been obtained with 2 threads: @nsfféedup of 5.95% and an EDP
gain of 10.44%. Although, on the floating-point bemarks, we obtained the highest
improvements with the enhanced (LVPT + RB) supéasaachitecture, the SMT with 3
threads also provides an important IPC speedu® &1% and an EDP gain of 25.94%.
Analyzing Figure 9 we can observe the advantag&Mi architectures against the
superscalar architecture irrespective these araneeld or not with selective instruction
reuse and value prediction mechanism.
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6. Conclusions and Further Work

In this study, we have presented and evaluategherstalar architecture that selectively
anticipates the values produced by high-latencyruosons. We developed a Reuse
Buffer and a Trivial Operation Detector for MUL aBdV instructions and a Last Value
Predictor for critical Load instructions, and weeigrated all these structures into the M-
SIM simulator [Sha05].

The experimental results, performed on the SPEQ) Z@¥hchmarks, show a
significant speedup and reduced energy consumfiirathe proposed architecture. Using
a Reuse Buffer of 1024 entries together with thgidlrOperation Detector improves the
IPC with over 2.2% and reduces the energy consemptith 4% on the floating-point
benchmarks. Predicting critical Load instructiofsough an additional Last Value
Predictor, improves the IPC with 3.5% on the intdgenchmarks and with 23.6% on the
floating-point benchmarks. This significant speedtpers the energy consumption with
6.2% on the integer benchmarks and with 34.5% erfltlating-point benchmarks, which
are far better than the improvements achieved &éysé#hective instruction reuse approach
proposed by Golander and Weiss: 4.80% and 11.8&8pectively.

Finally, we have studied the impact of selectivetrmction reuse and value
prediction in a Simultaneous Multithreaded architee. We used these methods to
anticipate the results of long-latency instructi¢htl, Div, Load), as we did within the
superscalar architecture. We implemented private BBl LVPTs for each thread. Our
simulation results, performed on the forementiobedchmarks, show that the IPC is
better on all evaluated SMT configurations, whesm RB and LVPT structures are used.
With fewer threads, the shared functional unitsiaréerused and therefore the Selective
Instruction Reuse and Value Prediction techniquagehan important improvement
potential. However, as the number of threads gringdPC speedup decreases, because
the shared functional units are better exploited wuthe higher thread-level parallelism
and therefore the RB and LVPT structures become ileportant. We measured the
highest IPC of 2.29 on the integer and 2.88 onflibeging-point benchmarks with our
six-threaded enhanced SMT architecture. As a ceimiy applying some well-known
anticipatory techniques selectively on long-latenostructions provides serious
performance gain and significantly reduces eneansomption in superscalar and even
in multithreaded architectures.

As a further work, understanding and quantifyingtiaction reuse and value
prediction benefits in a multicore architecture htige a very important challenge.
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