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Abstract: In our previously published research we discovered some very difficult to 
predict branches, called unbiased branches. Since the overall performance of modern 
processors is seriously affected by misprediction recovery, especially these difficult 
branches represent a source of important performance penalties. Our statistics show that 
about 28% of branches are dependent on critical Load instructions. Moreover, 5.61% of 
branches are unbiased and depend on critical Loads, too. In the same way, about 21% of 
branches depend on MUL/DIV instructions whereas 3.76% are unbiased and depend on 
MUL/DIV instructions. These dependences involve high-penalty mispredictions 
becoming serious performance obstacles and causing significant performance degradation 
in executing instructions from wrong paths. Therefore, the negative impact of (unbiased) 
branches over global performance should be seriously attenuated by anticipating the 
results of long-latency instructions, including critical Loads. On the other hand, hiding 
instructions’ long latencies in a pipelined superscalar processor represents an important 
challenge itself. We developed a superscalar architecture that selectively anticipates the 
values produced by high-latency instructions. In this work we are focusing on Multiply, 
Division and Loads with miss in L1 data cache, implementing a Dynamic Instruction 
Reuse scheme for the MUL/DIV instructions and a simple Last Value Predictor for the 
critical Load instructions. Our improved superscalar architecture achieves an average IPC 
speedup of 3.5% on the integer SPEC 2000 benchmarks, of 23.6% on the floating-point 
benchmarks, and an improvement in energy-delay product (EDP) of 6.2% and 34.5%, 
respectively. We also quantified the impact of our developed Selective Instruction Reuse 
and Value Prediction techniques in a simultaneous multithreaded architecture (SMT) that 
implies per thread Reuse Buffers and Load Value Prediction Tables. Our simulation 
results showed that the best improvements on the SPEC integer applications have been 
obtained with 2 threads: an IPC speedup of 5.95% and an EDP gain of 10.44%. Although, 
on the SPEC floating-point programs, we obtained the highest improvements with the 
enhanced superscalar architecture, the SMT with 3 threads also provides an important 
IPC speedup of 16.51% and an EDP gain of 25.94%. 
 
Keywords: superscalar architecture, SMT architecture, dynamic instruction reuse, load 
value prediction, speculative execution, power consumption 

1. Introduction 

In our previous work, we show that unbiased branches are characterized by low 
prediction accuracies (at average about 70%), irrespective of the prediction information 
type used in the state-of-the-art branch predictors [Vin06, Oan06, Gel07, Vin08]. Since 
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the overall performance of modern superscalar processors is seriously affected by 
misprediction recovery, these difficult branches represent a source of important 
performance penalties. As we pointed out in [Gel06], 28.68% of branches are dependent 
on critical Load instructions (Loads with miss in the L2 data cache that reach the head of 
the ROB), and 5.61% are unbiased and dependent on a previously committed critical 
Load instruction. Furthermore, 21.48% of branches depend on MUL/DIV instructions 
whereas 3.76% are unbiased and depend on MUL/DIV instructions. These dependences 
involve high-penalty mispredictions becoming serious performance obstacles and causing 
significant performance degradation in executing instructions from wrong paths. 
Therefore, the negative impact of unbiased branches, over the global performance should 
be seriously attenuated by anticipating the results of long-latency instructions. On the 
other hand, hiding instructions’ long latencies in a pipelined superscalar processor 
represents an important challenge itself. 

Our main objective is to develop a superscalar architecture that selectively 
anticipates the values produced by high-latency instructions. We will focus on Multiply, 
Division and Loads with miss in the L1 data cache. The reusability degree of MUL and 
DIV instructions, measured with an unlimited Reuse Table, was 28.9% on the integer 
benchmarks and 61.9% on the floating-point benchmarks. These instructions would be 
solved by a Dynamic Instruction Reuse scheme. The reusability degree of Load values 
was 77.4% on the integer benchmarks and 76.4% on the floating-point benchmarks 
[Gel08]. However, an additional Reuse Buffer for Load Value (Data) Reuse is not 
necessary, because a similar reuse mechanism is already provided by the existing L1 and 
L2 data caches. Therefore, the Load instructions with miss in the L1 data cache (selective 
approach) would be solved through value prediction. 

As a final objective of our research, we quantify the impact of our developed 
Selective Instruction Reuse and Value Prediction techniques in a Simultaneous 
Multithreaded Architecture that involves per thread Reuse Buffers (RB) and Load Value 
Prediction Tables (LVPT). We measure the IPC and the dynamic power consumption of 
the proposed SMT architecture by varying the number of threads. Also, we evaluate, for 
different number of threads, the IPC speedup and the EDP gain of a SMT architecture 
enhanced with Selective Instruction Reuse and Value Prediction against a classical SMT 
architecture. 

The organization of the rest of this paper is as follows. In Section 2, we review 
related work in the fields of dynamic instruction reuse and value prediction. Section 3 
presents the simulation methodology. Section 4 describes the two techniques that we 
implemented for anticipating the results of long-latency instructions. In Section 5 we 
illustrate the experimental results obtained using our developed simulator. The last 
Section suggests directions for future works and concludes the paper. 

2. Related Work 

Sodani and Sohi in [Sod97] firstly introduced the idea of dynamic instruction reuse. 
Dynamic instruction reuse is a non-speculative microarchitectural technique that exploits 
the repetition of dynamic instructions. The main idea is that if an instruction or an 
instruction chain is reexecuted with the same input values, its output value will be the 
same. The authors introduced different schemes that maintain the inputs and the results of 
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previously executed instructions in a hardware structure called Reuse Buffer. With 
instruction reuse, the number of executed dynamic instructions is reduced and the critical 
path might be compressed. According to the authors’ simulations on the SPEC95 
benchmarks, at average 26% of dynamic instructions are reusable. This quite high reuse 
degree is understandable taking into account that less than 20% of the static instructions 
are generating more than 90% of the repeated dynamic instructions. These useful 
statistics are qualitatively justified due to the fact that programs are written in a compact 
(loops, recurrence, inheritance, etc.) and generic manner (the programs have to operate on 
a variety of data structures). There are some important differences between our approach 
and Sodani’s. We reuse only MUL and DIV instructions and, although we use the same 
Sv scheme that track operand values for each instruction, our scheme does not require all 
fields of Sodani’s Sv scheme. Since we do not reuse Load instructions, we renounce to the 
address and memvalid fields. This reduces the hardware cost with benefits on power 
consumption, too. Another difference refers to the moment when the instructions are 
reused: in contrast with Sodani’s approach, the Reuse Buffer (RB) is accessed in our 
architecture during the issue stage, because most of the MUL/DIV instructions found in 
the RB in the dispatch stage do not have their operands ready. 

Richardson introduced Instruction Memoization [Ric93], a technique that consists 
in storing the inputs and outputs of long-latency operations and reusing the output if the 
same inputs are encountered again. The memo table is accessed in parallel with the first 
computation cycle, and the computation halts in the case of hit. Thus, memoing reduces a 
multi-cycle operation to one-cycle when there is a hit in the memo table. In [Bro00] the 
authors proposed a memoing technique in order to save power. Brooks et al. used memo 
tables in parallel with the floating-point and integer multipliers, the floating-point adder, 
and the floating-point divider. Their experimental results on SPEC92 benchmarks show 
an average speedup of 1.7% and an average power improvement of 5.4%. 

Citron and Feitelson in [Cit02] compare different instruction reuse techniques, 
including Instruction Reuse (IR) and Instruction Memoization (IM). The authors splat the 
Lookup Table into several smaller tables for floating-point instructions, Loads, multi-
cycle integer instructions (multiplication and division) and all other single-cycle 
instructions. Each table contained 256 entries. They used IM only for multi-cycle 
operations. The evaluation results (reuse degree and speedup) obtained on the SPEC95 
benchmarks show that only floating-point applications can benefit from instruction reuse. 

Golander and Weiss present in [Gol07] different instruction reuse methods for 
Checkpoint Processors. In checkpoint microarchitectures a misspeculation initiates the 
rollback, in which the latest safe checkpoint preceding the point of misprediction is 
recovered, and the reexecution of the entire code segment between the recovered 
checkpoint and the mispredicting instruction (selective reissue). The authors proposed 
two instruction reuse methods for normal execution and other two methods for 
reexecution after a misprediction. The Trivial method identifies trivial arithmetic 
operations having one of the inputs a neutral element or both operands with the same 
magnitude. The hardware for detecting trivial computations and selecting the result 
consists in comparators for the input operands and selectors for the writeback. In our 
simulator, we implemented the Trivial method proposed by Golander. The SelReuse 
method uses a small fully associative reuse cache for long latency arithmetic operations. 
As the authors are showing, an 8-entry cache is sufficient for reusing most of the 
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available results. The RbckReuse method is used for all instruction types from reexecuted 
paths, excepting control-flow instructions. Finally, the RbckBr method is used for the 
branch instructions from reexecuted paths. The reuse structure maintains only the branch 
outcome and relies on the BTB for the branch target address. A reuse approach that 
combines all four methods briefly presented above requires an area of 0.87 mm2 and 
consumes 51.6 mW. It achieves average instructions per cycle (IPC) speedup of 2.5% for 
the SPEC 2000 integer benchmarks, of 5.9% for the SPEC 2000 floating point 
benchmarks, and an improvement in energy-delay product of 4.80% and 11.85%, 
respectively. 

Lipasti et al. [Lip96] firstly introduced Value Locality as the third facet of the 
statistical locality concepts used in computer engineering. They defined the value locality 
as “the likelihood of the recurrence of a previously-seen value within a storage location 
inside a computer system”. Measurements using SPEC95 benchmarks show that value 
locality on Load instructions is about 50% using a history of one (producing the same 
value like the previous one) and 80% using a history of 16 previous instances. Based on 
the dynamic correlation between Load instruction addresses and the values the Loads 
produce, Lipasti et al. proposed a new data-speculative micro-architectural technique 
entitled Load Value Prediction that can effectively exploit value locality. Load value 
prediction is useful only if it can be done accurately since incorrect predictions can lead 
to increased structural hazards and longer Load latency. Starting by Loads’ dynamic 
behavior and classifying them separately (unpredictable, predictable and constants), it can 
be extracted the full advantage of each case. It can be avoided the cost of mispredictions 
by detecting the unpredictable Loads and the cost of memory access through identifying 
highly predictable Loads. An important difference between our value prediction approach 
and Lipasti’s is that we selectively predict Load instructions predicting only those 
generating a miss in L1 cache. Thus, we attenuate the mispredictions cost and reduce the 
hardware cost of the speculative micro-architecture. Moreover, since less hardware is 
required, there is also less power consumption. 

Mutlu et al. presented in [Mut06] a new hardware technique named address-value 
delta (AVD) prediction, able to parallelize dependent cache misses. They observed that 
some Load instructions exhibit stable relationships between their effective addresses and 
data values, due to the regularity of allocating structures in the memory by the program, 
which is sometimes accompanied by the regularity in the program’s input data. In order 
to exploit these regular memory allocation patterns, the authors proposed an AVD 
structure that maintains the Load instructions having a stable address-value difference 
(delta). Each entry of the AVD table consists in the following fields: Tag (the upper bits 
of the Load’s PC), AVD (the address-value delta corresponding to the last occurrence of 
that Load) and Conf (a saturating counter that records the confidence of AVD). The Conf 
field is used to avoid predictions for Loads with an unstable AVD. If a Load instruction 
having a stable AVD occurs with a cache miss, its data value is predicted by subtracting 
the stable delta from its effective address. This prediction enables the preexecution of 
dependent instructions, including Loads with cache miss. The experimental results show 
that integrating a 16-entry AVD predictor into a runahead processor improves the 
average execution time by 14.3%, but only for pointer-intensive applications. 

Liao and Shieh proposed in [Lia02] a new scheme that combines value prediction 
and instruction reuse. The main idea consists in predicting operand values if they are not 
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available and speculatively reusing instructions if the predicted operands match the 
values from the Reuse Buffer (RB). Obviously, the correct path must be reexecuted in the 
case of misprediction. If the operands of an instruction are ready and their values match 
the value fields of the corresponding RB entry, the result is guaranteed to be correct, and 
therefore the execution is non-speculative. The simulations on the SPEC95 benchmarks 
showed that this scheme provides an average speedup of 8.9%. 

In [Cha08] the authors proposed a hardware-based method, called early load, in 
order to hide the load-to-use latency (the latency that instructions wait for their operands 
produced by Load instructions) with little additional hardware costs. The key idea is to 
make use of the time that instructions are waiting in the instruction queue to load the data 
early, before the Loads are effectively executed, by pre-decoding instructions during the 
fetch stage. Thus, instead of using previous instances (values) of the current Load 
instruction Chang et al. are using an earlier executed-instance (value) of the current Load 
instance. In this way, the chance to be a correct value seems to increase. They use a small 
table, called Early Load Queue (ELQ) that records Load instructions and the early loaded 
data. The proposed scheme allows Load instructions to load data from memory before the 
execution stage. Obviously, a detection method assures the correctness of the early 
operation before the Load enters into the execution stage. If the corresponding ELQ entry 
is valid in the Load’s dispatch stage, the execution of the Load instruction is completely 
avoided and all dependent instructions get the data from the ELQ. Unfortunately this 
method doesn’t work for out-of-order speculative architectures whereas our technique 
does. Also, it works only for very small instruction queues. The experimental results 
showed that this scheme can achieve a performance improvement of 11.64% on the 
Dhrystone benchmark and 4.97% on the MiBench benchmark suite. 

3. Simulation Methodology 

We developed a cycle-accurate execution driven simulator derived from the M-SIM 
simulator [Sha05] supporting the unmodified, statically linked Alpha AXP binaries as 
well as the power estimation as supplied by the Wattch framework [Bro00]. M-SIM 
extends the SimpleScalar toolset [Bur97] with accurate models of the pipeline structures, 
including explicit register renaming, and support for the concurrent execution of multiple 
threads. We modified M-SIM to incorporate our selective instruction reuse and value 
prediction techniques in order to measure the relative IPC speedup and relative energy-
delay product gain when the results of long-latency instructions are anticipated. 

All simulation results are generated on the SPEC 2000 benchmarks [SPEC] and 
are reported on 1 billion dynamic instructions, skipping the first 300 million instructions. 
For the superscalar architecture we evaluated six floating-point benchmarks (applu, 
equake, galgel, lucas, mesa, mgrid) and seven integer benchmarks: computation intensive 
(bzip, gcc, gzip) and memory intensive (mcf, parser, twolf, vpr). In SMT mode, the M-
SIM runs multiple benchmarks as different threads in parallel. Therefore, we combined 
benchmarks into groups of 2, 3 or 6 depending on the simulated SMT architecture. Thus, 
we used {bzip, gcc}, { gzip, parser}, { twolf, vpr}, { applu, equake}, { galgel, lucas}, 
{ mesa, mgrid} for our SMT with 2 threads, {bzip, gcc, gzip}, { parser, twolf, vpr}, 
{ applu, equake, galgel}, { lucas, mesa, mgrid} for the SMT with 3 threads, and {bzip, 
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gcc, gzip, parser, twolf, vpr}, { applu, equake, galgel, lucas, mesa, mgrid} for the 6-
threaded SMT. Table 1 presents some important parameters of the simulated architecture: 
 

Execution unit Number of units Operation latency 
intALU 4 1 
intMULT / intDIV 1 3 / 20 
fpALU 4 2 

Execution 
Latencies 

fpMULT / fpDIV 1 4 / 12 
Superscalarity Fetch / Decode / Issue / Commit  width = 4 

Branch predictor bimodal predictor with 2048 entries 
Memory unit Access Latency 
4-way associative L1 data cache, 32 KB 1 cycle 
8-way associative unified L2 data cache, 
512 KB 

6 cycles 
Caches and 

Memory 

Memory 100 cycles 
Register File: 32 INT / 32 FP 
Reorder Buffer (ROB): 128 entries Resources 
Load/Store Queue (LSQ): 48 entries 

Table 1. Parameters of the simulated architecture 

The power consumption measurements are generated using an 80 nm CMOS 
technology. Figure 1 presents the structure of the simulator. 
 

Cycle-Level
Performance

Simulator

Hardware
Configuration

SPEC
Benchmark

Power Models
Hardware Access Counts

Performance
Estimation

Power
EstimationCycle-Level

Performance
Simulator

Hardware
Configuration

SPEC
Benchmark

Power ModelsPower Models
Hardware Access Counts

Performance
Estimation

Power
Estimation

 
Figure 1. The structure of the simulator 

As Figure 1 shows, the simulator generates both performance and power 
consumption estimation. The detailed power modeling methodology, used in the 
simulator, is presented in [Bro00]. The dynamic power consumption in CMOS 
microprocessors is defined as: 
 

faVCP ddd ⋅⋅⋅= 2    (1) 
 

where C is the capacitance, generated using Cacti [Shi01], Vdd is the supply voltage, and f 
is the clock frequency. Vdd and f depend on the assumed process technology. The activity 
factor a indicates how often clock ticks lead to switching activity on average. The power 
consumption of the modeled units highly depends on the internal capacitances of the 
circuits. From the capacitance point of view, there are three categories of architectural 
structures: array structures, content-associate memories, and complex logic blocks. The 
first two categories are used to model the caches, branch predictors, the reorder buffer, 
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the register renaming table, and the register file, while the last category is used to model 
functional units. 
 For the energy measurements, we used the Energy-Delay Product, a widely used 
metric [Gon96, Bro00, Gol07]: 

2IPC

PowerTotal
EDP =    (2) 

The Energy-Delay Product (EDP) represents the processor’s total power, divided by the 
squared IPC. 

4. Anticipating Long-Latency Instructions Results 

4.1. Selective Dynamic Instruction Reuse 

For the MUL and DIV instructions we will use the Sv reuse scheme. The information 
about instructions is maintained in a direct mapped Reuse Buffer (RB). The RB is 
accessed during the issue stage, because most of the MUL/DIV instructions found in the 
RB during the dispatch stage do not have their operands ready (91.5% on the integer 
benchmarks and 64.6% on the floating-point benchmarks). Each RB entry has the 
following fields: Tag (the higher part of the PC), SV1 and SV2 (the source values of the 
MUL/DIV instruction), Result (the output value of the MUL/DIV instruction). Since we 
do not reuse Loads with this scheme, the address and mem valid fields used in [Sod97] 
are unnecessary. In this way, our implemented structure is simpler and more cost 
effective (from hardware budget and power consumption point of view) than the initial 
scheme proposed by Sodani and Sohi. 
 

Sv Reuse Buffer (RB)

PC of MUL / DIV

Tag SV1 SV2 Result

Sv Reuse Buffer (RB)

PC of MUL / DIV

Tag SV1 SV2 Result

 
Figure 2. Reuse scheme for MUL & DIV instructions 

If a certain MUL/DIV instruction is found in the RB, a reuse test is generated. If 
the actual operand values, taken from the ROB, match the SV1 and SV2 fields from the 
selected RB entry, the instruction is not sent to a functional unit, its result value being 
already available for dependent instructions. Every non-reused MUL/DIV instruction 
updates the RB in the commit stage: writes the tag, the source values and the result into 
the corresponding RB entry. From the power consumption point of view, the Reuse 
Buffer was modeled as a cache array structure using the same power models that the 
other array structures use. Obviously, the main benefit of reusing long-latency 
instructions consists in unlocking dependent instructions (see Figure 3). In Figures 3 and 
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5, all stages except Execute stage are a single cycle length; the Execute stage has variable 
length, depending upon the latency of the executing instruction (see Table 1). 
 

Fetch Decode Issue Execute Commit

RBLookup (PC, V1, V2) Result (if hit)

Fetch Decode Issue Execute Commit

RBLookup (PC, V1, V2) Result (if hit)  
Figure 3. Pipeline with Reuse Buffer (RB) 

We also detected trivial operations implementing a technique firstly introduced in 
[Ric93] by Richardson. We considered the following operations: V*0, V*1, 0/V, V/1 and 
V/V. A simple hardware scheme for detecting trivial computations and selecting the 
result is presented in [Gol07] and consists in comparators for the input operands and 
selectors for the write-back. If during the dispatch stage, a MUL instruction is detected 
with an operand value of 0 or 1, the result is provided by the detector, avoiding the 
functional unit allocation and execution. In the same manner, if a DIV instruction is 
detected with the first operand being 0, the second operand 1, or with identical operands, 
the result is provided by the detector being thus available at the end of the dispatch stage. 
The Reuse Buffer is accessed during the issue stage for the reuse test only if the 
MUL/DIV operation is not detected as being trivial in the dispatch stage. 

4.2. Selective Load Value Prediction 

We will integrate into our architecture a simple Last Value Predictor used only for Loads 
with miss in the L1 data cache (selective approach). In this way, the implemented 
structure is more efficiently used; the collisions number will be lower against the 
approach that predicts all Load instructions, having tables of the same size. The 
information about Load instructions is maintained in a direct mapped Load Value 
Prediction Table (LVPT). The LVPT is accessed during the issue stage, only if the 
current Load instruction involves a miss in the L1 data cache (critical Load). Each LVPT 
entry has the following fields: Tag (the higher part of the PC), Counter (a 2-bit saturating 
confidence counter with two unpredictable and two predictable states), and Value (the 
Load instruction’s result). 
 

Load Value Prediction
Table (LVPT)

PC of Load with miss
in L1 Data Cache

Tag Counter Value

Load Value Prediction
Table (LVPT)

PC of Load with miss
in L1 Data Cache

Tag Counter Value

 
Figure 4. The Last Value Predictor architecture 
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In the case of a hit in the LVPT, the corresponding Counter is evaluated. If the 
confidence counter is in an unpredictable state, the Load is executed without prediction. 
Otherwise the Value from the selected LVPT entry is speculatively forwarded to the 
dependent instructions. In the commit stage, when the real value is available, in the case 
of misprediction, a recovery is necessary in order to squash speculative results and 
selectively re-execute the dependent instructions with the correct values (see Figure 5). 
This selective reissue requires a mechanism for propagating misprediction information 
through the data flow graph to all dependent instructions. We considered in our 
simulations value prediction latency of one cycle and, in the misprediction case, a 
recovery taking 7 cycles. 

Fetch Decode Issue Execute Commit

LVPTIf Load with miss
in L1 Data Cache

Predicted Value

Misprediction Recovery

Fetch Decode Issue Execute Commit

LVPTIf Load with miss
in L1 Data Cache

Predicted Value

Fetch Decode Issue Execute Commit

LVPTIf Load with miss
in L1 Data Cache

Predicted Value

Misprediction Recovery

 
Figure 5. Pipeline with Load Value Predictor 

During the commit stage, every critical Load updates the LVPT: only the Counter 
field in the case of correct prediction or the Value and the Counter fields in the case of 
misprediction. In the miss case the LVPT, the Tag and the Value are inserted into the 
selected entry, and the Counter is reset (strongly unpredictable state). From the power 
consumption point of view, the LVPT was modeled as a cache array structure using the 
same power models that the other array structures use. 

5. Experimental Results 

Figure 6 presents the reuse degrees obtained with and without detecting trivial operations 
in the superscalar architecture.  
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Figure 6. Reuse degrees obtained for different RB sizes with and without trivial operation 

detection in the superscalar architecture 
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The RB provides on the integer benchmarks a reuse degree of 17.2% with an RB of 1024 
entries, compared with the reusability degree of 28.9% (the upper limit obtained with an 
unlimited RB). It was more efficient for the floating-point benchmarks, where we 
obtained a reuse degree of 54.8% with an RB of 2048 entries, compared with the 
reusability degree of 61.9% (through an unlimited RB). As Figure 6 shows, trivial 
operations detection improves significantly the reuse degree. 

Table 2 presents the reuse degrees, the IPC, and the power consumption obtained 
with the superscalar architecture, on the integer and floating-point SPEC 2000 
benchmarks, by using the Sv reuse scheme together with the Trivial Operation Detector 
for the MUL and DIV instructions. The Reuse Degree columns represent the percentage 
of reused MUL and DIV instructions across all the evaluated integer and floating-point 
benchmarks. The IPC represents the average instructions per cycle. The RB Power 
column shows the additional dynamic power dissipated by the RB for each evaluated size 
in mW and in percentages reported to the total processor power. 
 

SPEC2000 integer SPEC2000 floating-point RB Power  RB entries 
Reuse Degree [%] IPC Reuse Degree [%] IPC [mW] [%] 

0 (no RB) – 1.6857 – 2.0410 0 0.000 
16 25.8 1.6881 36.8 2.0612 7.2 0.008 
32 27.4 1.6862 37.3 2.0613 12.7 0.014 
64 28.1 1.6862 40.5 2.0747 16.3 0.018 
128 28.2 1.6862 42.5 2.0752 28.8 0.031 
256 28.2 1.6862 45.8 2.0787 38.4 0.042 
512 28.5 1.6862 50.6 2.0828 70.2 0.077 
1024 29.0 1.6862 56.9 2.0863 99.6 0.109 
2048 29.0 1.6862 62.8 2.0888 178.8 0.195 

Table 2. Reuse degree, IPC and power consumption obtained with the superscalar architecture 
using the RB and Trivial Operation Detector on the SPEC2000 benchmarks 

The very low IPC gain measured on the integer benchmarks is justified because 
only about 11 million instructions were reused from a total of 7 billion across all the 
integer benchmarks. Moreover, reusing MUL/DIVs belonging to wrong speculated paths 
frequently involves issuing some long latency Loads. These critical instructions would 
not be executed without successful reuse. 
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Figure 7. Relative IPC speedup and relative energy-delay product gain on the floating-point 

benchmarks with RB and Trivial Operation Detection in the superscalar architecture 
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Although the RB structure dissipates additional dynamic power, reusing long-
latency instructions increases the IPC and therefore lowers the total energy consumption 
(see Figure 7). We determined the energy-delay product for the superscalar architecture 
without RB and for the architecture with RB of different sizes. The EDP Gain represents 
the relative energy-delay product improvement for each RB size. 
 The speedup is insignificant in the case of the integer benchmarks, due to the 
significantly lower number of MUL and DIV instructions. Consequently, the energy-
delay product is better only for RB sizes between 16 and 128 entries, but the 
improvement is insignificant. These results are in concordance with Citron [Cit02] who 
also remarked the poor evaluation results (reuse degrees and speedups) obtained on the 
SPEC95 integer benchmarks. Therefore a significant benefit of MUL/DIV instructions 
reuse is achieved only for floating-point applications. 
 Table 3 presents the prediction accuracy, the IPC, and the power consumption 
obtained by evaluating our developed superscalar architecture with MUL/DIV Reuse 
Buffer of 1024 entries and Trivial Operation Detector for the MUL and DIV instructions 
and with Last Value Predictor for critical Load instructions. The PA columns represent 
the prediction accuracy of critical Loads. The IPC represents the average instructions per 
cycle. The LVPT Power column shows the additional dynamic power dissipated by the 
LVPT for each evaluated size in mW and in percentages reported to the total processor 
power. 
 

SPEC2000 integer SPEC2000 floating-point LVPT Power  LVPT entries 
PA IPC PA IPC [mW] [%] 

0 (no RB, LVP) – 1.6857 – 2.0410 0 0.000 
16 94.0 1.7066 99.7 2.1873 6.4 0.007 
32 93.5 1.7094 99.8 2.2333 8.7 0.009 
64 92.6 1.7245 99.8 2.3533 14.6 0.016 
128 91.0 1.7318 99.7 2.3915 19.9 0.022 
256 88.7 1.7351 99.5 2.4378 33.6 0.037 
512 88.1 1.7387 99.3 2.4484 48.0 0.052 
1024 87.1 1.7456 99.2 2.5241 84.9 0.092 
2048 87.2 1.7460 99.1 2.5320 128.1 0.139 

Table 3. Prediction accuracy, IPC and power consumption obtained with the superscalar 
architecture using an RB of 1024 entries, the Trivial Operation Detector and the LVPT 

Figure 8 presents the relative IPC speedup and the relative energy-delay product 
improvement for the integer and floating-point benchmarks. We determined the energy-
delay product for the superscalar architecture without RB and LVPT and for the 
architecture with a RB of 1024 entries and LVPTs of different sizes. The EDP Gain 
represents the relative energy-delay product improvement for each LVPT size. As it can 
be observed, the optimal LVPT size is 1024. Both IPC speedup and EDP gain are 
significantly higher on the floating-point benchmarks compared to the integer 
benchmarks. This difference occurs because the number of critical Loads is more than 
twice higher in the floating-point benchmarks. The difference is further accentuated by 
the percentage of predicted critical Loads (classified as predictable by LVPT confidence 
counters) which is 85% on the floating-point benchmarks and only 40% on the integer 
benchmarks [Gel08]. Finally, the difference is also slightly increased by the higher 
prediction accuracy obtained on the floating-point benchmarks. 
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Figure 8. Relative IPC speedup and relative energy-delay product gain with the superscalar 

architecture using a Reuse Buffer of 1024 entries, the Trivial Operation Detector, and the Load 
Value Predictor 

We also measured the memory traffic reduction as the percentage of correctly 
predicted Loads reported to the total number of memory accesses. Our evaluations show 
an average memory traffic reduction of 1.58% on the integer benchmarks and of 10.93% 
on the floating-point benchmarks, which are in concordance with our energy 
consumption estimations. 

The selective instruction reuse approach proposed by Golander and Weiss 
(presented in paragraph 2) achieves an average IPC speedup of 2.5% on the SPEC 2000 
integer benchmarks, of 5.9% on the floating point benchmarks, and an improvement in 
energy-delay product of 4.80% and 11.85%, respectively. In comparison, our improved 
superscalar architecture achieves an average IPC speedup of 3.5% on the integer SPEC 
benchmarks, 23.6% on the floating-point benchmarks, and an improvement in energy-
delay product of 6.2% and 34.5%, respectively.  

As a final objective of this research, we quantified the impact of our developed 
techniques for anticipating long-latency instructions results in a simultaneous 
multithreaded architecture that involves per thread RBs and LVPTs. We measured the 
IPC and the dynamic power consumption of the proposed SMT architecture by varying 
the number of threads. Figure 9 presents the IPC obtained by evaluating our developed 
superscalar and SMT architectures with and without Reuse Buffer and Load Value 
Predictor. According to our previous results, we optimally sized the RB and the LVPT to 
1024 entries. The RB and LVPT structures improve the IPC on all the evaluated general-
purpose applications within all architectural configurations (superscalar and SMT). 
Therefore, we consider that the Worst Case Execution Time (WCET) is not increased by 
our proposed techniques. As far as concern floating-point benchmarks, the highest 
improvement was obtained with one thread, and as the number of threads grows, the IPC 
improvement becomes lower. With fewer threads, the ten shared functional units (see 
Table 1) are underused and therefore the Selective Instruction Reuse and Value 
Prediction techniques have an important improvement potential. With a higher number of 
threads, the same ten functional units are highly used by the SMT engine, thus both the 
instruction reuse and value prediction mechanisms becoming less important. Therefore, 
especially on floating-point benchmarks, with six threads we obtained the best IPC but 
the lowest relative IPC speedup. 
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Figure 9. IPC obtained using the SMT architecture with and without RB & LVPT on the SPEC 
2000 benchmarks 

Finally, we evaluated, for different number of threads, the IPC speedup and the EDP gain 
of a SMT architecture enhanced with Selective Instruction Reuse and Value Prediction 
against a classical SMT architecture. In Figure 10 the first and third bars represent the 
EDP gains obtained with our superscalar (one thread) and SMT architecture (2, 3 and 6 
threads) on the floating-point and integer benchmarks, respectively. The second and 
fourth bars presents the IPC speedups achieved with the same architectures. 
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Figure 10. Relative IPC speedup and EDP gain (enhanced SMT vs. classical SMT) by varying 

the number of threads 
 

As Figure 10 depicts, the RB and LVPT structures achieved IPC speedups and 
EDP gains on all the simulated configurations. The best improvements on the integer 
benchmarks have been obtained with 2 threads: an IPC speedup of 5.95% and an EDP 
gain of 10.44%. Although, on the floating-point benchmarks, we obtained the highest 
improvements with the enhanced (LVPT + RB) superscalar architecture, the SMT with 3 
threads also provides an important IPC speedup of 16.51% and an EDP gain of 25.94%. 
Analyzing Figure 9 we can observe the advantage of SMT architectures against the 
superscalar architecture irrespective these are enhanced or not with selective instruction 
reuse and value prediction mechanism. 
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6. Conclusions and Further Work 

In this study, we have presented and evaluated a superscalar architecture that selectively 
anticipates the values produced by high-latency instructions. We developed a Reuse 
Buffer and a Trivial Operation Detector for MUL and DIV instructions and a Last Value 
Predictor for critical Load instructions, and we integrated all these structures into the M-
SIM simulator [Sha05]. 

The experimental results, performed on the SPEC 2000 benchmarks, show a 
significant speedup and reduced energy consumption for the proposed architecture. Using 
a Reuse Buffer of 1024 entries together with the Trivial Operation Detector improves the 
IPC with over 2.2% and reduces the energy consumption with 4% on the floating-point 
benchmarks. Predicting critical Load instructions through an additional Last Value 
Predictor, improves the IPC with 3.5% on the integer benchmarks and with 23.6% on the 
floating-point benchmarks. This significant speedup lowers the energy consumption with 
6.2% on the integer benchmarks and with 34.5% on the floating-point benchmarks, which 
are far better than the improvements achieved by the selective instruction reuse approach 
proposed by Golander and Weiss: 4.80% and 11.85%, respectively. 

Finally, we have studied the impact of selective instruction reuse and value 
prediction in a Simultaneous Multithreaded architecture. We used these methods to 
anticipate the results of long-latency instructions (Mul, Div, Load), as we did within the 
superscalar architecture. We implemented private RBs and LVPTs for each thread. Our 
simulation results, performed on the forementioned benchmarks, show that the IPC is 
better on all evaluated SMT configurations, when the RB and LVPT structures are used. 
With fewer threads, the shared functional units are underused and therefore the Selective 
Instruction Reuse and Value Prediction techniques have an important improvement 
potential. However, as the number of threads grows the IPC speedup decreases, because 
the shared functional units are better exploited due to the higher thread-level parallelism  
and therefore the RB and LVPT structures become less important. We measured the 
highest IPC of 2.29 on the integer and 2.88 on the floating-point benchmarks with our 
six-threaded enhanced SMT architecture. As a conclusion, applying some well-known 
anticipatory techniques selectively on long-latency instructions provides serious 
performance gain and significantly reduces energy consumption in superscalar and even 
in multithreaded architectures. 

As a further work, understanding and quantifying instruction reuse and value 
prediction benefits in a multicore architecture might be a very important challenge. 
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