
CROSS-FERTILISATION BETWEEN COMPUTER ARCHITECTURE AND OTHER
COMPUTER SCIENCE FIELDS

Lucian N. VINTAN, Adrian FLOREA

“L. Blaga” University of Sibiu, Computer Science Department
Str. E. Cioran, No. 4, Sibiu-2400, ROMANIA

E-mail: vintan@jupiter.sibiu.ro, aflorea@vectra.sibiu.ro

Abstract: The main aim of this paper is to prove that using new scientific tools in
Computer Architecture research could be quite efficient and useful. We exemplified this
idea during the paper, by analysing some innovative proposals in branch prediction
research field. It’s necessary that computer architects to be more opened at other
Computer Science areas and research methods, in order to enlarge their view and to
improve their results. Cross-fertilisation is seen as essential if microprocessors are to
continue their exponential growth. In conclusion we consider that using some more
mature theoretical research tools, belonging to different science fields, could be an
excellent alternative approach in the present-day Computer Architecture research method.

Keywords: Computer Architecture, Instruction Level Parallelism, Branch Prediction,
Neural Nets, Genetic Programming, Simulation.

1. INTRODUCTION

During the last 25 years, computer architecture
researches have been followed an evolutionary path,
based mainly on some quite old concepts and ideas.
The performance growth over these years was really
amazing but it's difficult to believe that it will be
possible to follow the same path of development in
the future. Thus, there are necessary some innovative
ideas in this domain, revolutionary and evolutionary
at the same time. Especially in Instruction Level
Parallel Processors (ILPP) research field, the key
seems to be an integrated approach based on a cross-
fertilization between hardware and software
scheduling and respectively between technology and
architecture. Also, the performance centerpiece
criteria needs to be accomplished by other very
important interdependent quality criteria like
availability, maintainability and scalability of
services (Hennessy, 1999).

According to our opinion, the most promising
present-day approach in ILPP domain consists in
value prediction, dynamic instruction reuse (DIR)
and multi-threading. The value prediction super-
speculative technique is based on the value locality
concept, a third facet of locality that is frequently
present in programs. Value locality describes the
likelihood of the recurrence of a previously - seen
value within a storage location (Lepak and Lipasti,
2000) Researchers show that some micro-
architectural enhancements that enable value
prediction can effectively exploit value locality to
collapse true dependencies, reduce memory latency
and bandwidth requirements. On the other hand,
empirical statistics suggest that many instructions
and groups of instructions, having the same inputs,
are executed dynamically (Sodani, 2000) due to some
program characteristics (loops and recursion etc.).
Such instructions do not have to be executed
repeatedly because their results are obtained from a

reuse buffer where they were saved previously. In the
case of reusing groups of true data dependent
instructions, DIR can outperform the programs
intrinsic sequentially ceiling (is Amdahl's low
contradicted here?). Other feasible recent approaches
in processor architecture research field are
multiscalar processors, trace processors, data-scalar
processors, multithreaded and simultaneous
multithreading processors, multiprocessors on a chip
etc. However, this innovative research way seems to
be insufficient in our opinion.

At this moment the main (unique?) way we can
understand Computer Architecture is by doing
laborious simulations. But, the question is, this
means a real profound understanding? From our
point of view certainly not, because sometime is very
difficult or even impossible an in depth
understanding of the hardware- software interface in
a qualitative manner, based only on benchmarking.
Simulation is, of course, absolutely necessary but,
unfortunately, it isn't sufficient for an in depth
understanding. Sometimes, the obtained quantitative
results represent only effects and not the real causes
of some processing phenomena.

Treated as separate entities, hardware and software
seem to be really "sciences". As an example,
automata theory, circuit complexity, digital design
etc. could be considered, at this moment, being
mature theoretic "hardware" fields. On the other
hand, pure "software" domains like computer
algorithms and complexity theory, formal languages
or compiling theory could be also considered
"sciences". But could we consider Computer
Architecture, therefore a hardware-software area,
being really a science? The answer is obviously no,
because in this field, situated at the hardware-
software interface, the main approach is based on
benchmarking and simulation rather than
mathematical models. That means a lot of empirism,
heuristics, "strange" optimisation techniques,
principles and rules (ex. "90/10 rule") but not a logic
formalised mature theory. Why this ? Perhaps
because the "hardware-software" interface represents
a too complex synergy concept and - up to this
moment - we are unable to formalise and understand
it in a real qualitative manner.

In our opinion, taking into account all these briefly
presented aspects, Computer Architecture's pure
evolutionary era must be finished. Perhaps, in the
nearest future, there are necessary some new
revolutionary architectural concepts, too. The
alternative seems to be a more integrated approach
that mainly means a synergism between the
following aspects:

• technology respectively architecture,
concepts, algorithms and methods

• hardware, software and applications - not
treated as separate entities (Patt and Patel,
2001; Hennessy, 1999) (as an example, for
some object oriented programs, where more
indirect branches may be executed,
establishing an optimal hardware branch
predictor scheme still represents an open
problem).

• different (Computer) Science areas and
techniques working together for a certain
Computer Architecture challenge

The main aim of this paper is to prove that this last
new proposed synergism could be quite efficient and
useful. We'll exemplify this new idea during the next
sections, by analysing some innovative proposals in
branch prediction research field (neural branch
predictors, markovian predictors, genetic predictors
etc.)

2. A NEURAL BRANCH PREDICTOR

As it's presented in (Steven and Morales, 2000;
Vintan and Steven, 2000)), an interesting alternative
approach in branch prediction research is to look to
other computer science application areas for novel
solutions to this important problem. So, we proposed
the application of neural networks to dynamic branch
prediction. In this sense it's developed a Multi- Layer
Perception (MLP) with a single intermediate layer
neural network accomplished with Backpropagation
learning algorithm. We compared this neural branch
predictor with a Two Level Adaptive Branch
Predictor named GAp (Yeh and Patt, 2000)
according to Yeh & Patt's taxonomy. The proposed
GAp predictor uses an k bit shift register (HRg) to
record the outcome (Taken/Not Taken) of the last k
branches executed. The per-address Prediction
History Table (PHT) is accessed by concatenating the
PC address with HRg. In this experiment, each PHT
entry consists in a tag field, the branches target
address and only one prediction bit. The PHT was
considered of unlimited size.

In order to allow a direct comparison with this
conventional GAp predictor the neural branch
predictor receives on its entries the PC concatenated
with HRg, too. The MLP then produces a true output
for predicting taken and respectively a false output
for predicting not taken. There are considered here
two distinct training processes: static and dynamic.
Static training was achieved by generating a training
vector set, consisting of (PC, HRg) pairs, for each
benchmark. First, the benchmarks instruction trace
was pre-processed to determine how frequently
individual branches were taken for each HRg specific
pattern. Some of the branch outcomes (Taken/Not
Taken) are highly biased with branches being taken

(or not taken) most of the running time. In contrast,
other branches are very hard to be predicted on the
basis of the given information. Only highly biased
(PC, HRg) pairs were included in the training set.
The statically trained predictor was then used in a
final trace-driven simulation. On the other hand, the

dynamically training process is done during the trace
processing, thus without a statically pre-training.
Figure 1 presents the improvement introduced by the
statically training process. As it can be observed, the
statically learning algorithm involves an average
prediction growth of about 0.8 percents.

88

88,5

89

89,5

90

90,5

4 6 8 10

HRg

A
p Static MLP

Dynamic MLP

Figure 1. A Statically Trained vs. a Dynamically Trained neural predictor

Another used "static" training method consists in
learning all the traces in a random order, until the
recognition error became smaller than a certain
limit. Figure 2 compares the proposed neural branch
predictor with an equivalent GAp predictor

considering different values of correlation history
length (bits of HRg register). As it can be observed,
the neural branch predictor is consistently more
accurate than the GAp predictor by a margin of
around 2-3%.

80

82

84

86

88

90

2 4 6 8 10

HRg(k)

A
cc

ur
ac

y

GAP
Neural

Figure 2. An “unlimited” GAp Predictor vs. a Neural Branch Predictor

As a partial conclusion, clearly, neural networks are
a useful vehicle for future branch prediction
research, even as an upper metric of branch
predictability, useful in quantitative evaluations of
(classical) branch prediction schemes.

3. OTHER NEURAL APPROACHES IN
COMPUTER ARHITECTURE

Also an interesting neural nets approach in branch
prediction was proposed by Calder (Calder et al,
1995). The authors discussed the application of
neural nets to the problem of static branch prediction
at compile time. The prediction methodology is
therefore entirely based on information about
program’s structure that can be readily determined
by a compiler. As an example, a branch successor
path that leads out of a loop or function is less likely
to be followed than a path that remains within the

loop or function. In our opinion, the main
contribution of this work consists in determining a
static feature set of information related to the
important static elements of the corpus of programs.
So, in this set, there are included some branch
features and also some features of the taken/not
taken successor of the branch. All these static
features that are correlated with branch outcomes are
coded as binary inputs in the static neural predictor.
Therefore a neural network is used to map static
features associated with each branch to the
probability that the branch will be taken. The main
idea of this static neural branch predictor is that the
behaviour of a corpus of programs (training set) can
be used to infer the behaviour of new programs.
Static branch prediction is important especially for
compilers because it contributes to implement
optimisations like trace-scheduling and other profile-
directed optimisations (Calder et al, 1995). Using
this approach, the authors reported a misprediction

rate of only 20%, remarkably low for static branch
prediction. Another interesting neural approach
applied in Computer Architecture was presented in
(Khalid, 1995). This paper presents an original
neural algorithm (KORA) that uses a back
propagation neural net in order to guide the block
replacement decisions made by the optimal
algorithm (Belady). The key consists in identifying
and discarding the dead blocks in cache memories.
More precisely, the neural net is used here to
identify two distinct types of cache blocks: transient
blocks (new arrivals to the cache) respectively
shadow blocks (recently replaced from the cache)
stored in a so named shadow directory. As it’s
known, there is a significant statistical probability
that the shadow blocks are going to be referenced
soon. Therefore, the neural net identify these shadow
blocks and provide them with a preferential
treatment. If the transient blocks do not become
active during a certain time period, they are removed
from the cache. The corresponding trace driven
simulation results indicate that this neural
replacement algorithm achieves approximately 8%
performance improvement over a LRU scheme,
measured for the SPEC benchmarks. This idea
seems to open new research directions when applied
to the page replacement algorithms in virtual
memory systems and disk caches.

Related to the problem of new original replacement
algorithms, we found at least another innovative
paper. This is Stiliadis & Varma paper, that
introduced a new heuristics named "Selective Victim
Cache" in order to minimise the number of
replacements between the main cache and the victim
cache. In our opinion there is a similarity between
the Selective Victim Cache and respectively the
shadow directory proposed by Pomerene and
improved by Khalid through neural nets algorithms.

4. A MARKOVIAN BRANCH PREDICTOR

During this section it was analysed a markovian
branch prediction scheme, first introduced by Trevor
Mudge (Mudge et al,1996). This new approach was
investigated based on a trace driven simulation
methodology in our previous work. The prediction is
based here on the PPM (Prediction by Partial
Matching) algorithm that represents an universal
compression/prediction algorithm. PPM has been
theoretically proven optimal in data compression
and prefetching and also in some speech recognition
problems. The bases of the PPM algorithm of order
m are a set of (m+1) Markov predictors. A Markov
predictor of order j predicts the next bit based upon
the j immediately preceding bits pattern (a simple
Markov chain). More precisely, the prediction
process counts every time when that pattern on j bits

was found, if a '1 'or respectively by a '0' followed it.
The prediction is according to the most frequent bit
that follows the searched and founded pattern. PPM
uses the m immediately preceding bits to search a
pattern in the highest order Markov model, in this
case m. If the search succeeds, which means the
pattern appears in the input sequence seen so far,
PPM predicts the next bit using this m-th order
Markov predictor. However, if the pattern is not
found, PPM uses the (m-1) immediately preceding
bits to search the next lower order (m-1)-th order
Markov predictor. Whenever a search misses, PPM
reduces the pattern by one bit and uses it to search in
the next lower order Markov predictor. This process
continues until a match is found and the
corresponding prediction can be made.

If we consider the search pattern for every Markov
predictor as a HRg (Global History Register)
pattern, it is proved (Mudge et al, 1996) that the
complete PPM predictor can be viewed as a set of
Two Level Predictors, having not one size of HRg
but a set that spans m down to 0. It’s obviously that
this PPM branch predictor generalises the Two
Level Adaptive Predictors. To implement this
Markov predictor in hardware would require almost
double of the hardware resources, straining the
limits of practicality. Trying to avoid this circuit
complexity, we investigated a simplified PPM
branch predictor consisted by only one Markov
predictor of order m, quite feasible to be
implemented in hardware. Surprisingly, in both
cases the obtained prediction accuracy are quite
similar, showing clearly that a simplified PPM
predictor outperforms a classical scheme (GAg in
our experiments) and also it would be feasible to be
implemented in hardware, the results being in a
perfect concordance with those published by other
researchers (Mudge et al,1996). Dynamic branch
prediction in high-performance processors is a
specific instance of a general Time Series Prediction
problem that occurs in many areas of science. In
contrast, most current branch prediction researches
are focused on Two-Level Adaptive Branch
Prediction techniques, a very specific solution to the
branch prediction problem. An alternative approach
is to look to other application areas and fields for
novel solutions to the problem. In our opinion the
main merits of this markovian approach is that it
investigates the branch prediction problem as a
mature scientifically problem, involving also
corresponding research tools.

5. GENETIC BRANCH PREDICTORS

In this section it is discussed an interesting approach
in order to search for new branch predictors using a
genetic programming method. Emer and Gloy (Emer

and Gloy, 1997) first developed this interesting idea.
The authors proposed a language named BP that is
an algebraic-style branch predictor language, based
on the observation that every predictor can be
divided in several elementary blocks such –
memories, functions and numbers etc. The actual
Two Level Adaptive predictors can be divided into
two distinct classes: static and dynamic. In the case
of a static predictor the prediction is always the same
logical function. On the other hand, dynamic
predictors learn to make better predictions using
information that is only available after the prediction
is made. Dynamic predictors thus use feedback to
learn from past behaviour and hence make better
predictions in the future.
In order for such a feedback control system to learn,
it needs some sort of memory. To provide this
memory was defined a primitive. This primitive
noted P [w, d] (I; U), is basically a memory that is w
bits wide and d entries deep. This memory has two
types of operations: predict and update. The predict
phase consist in accessing memory at address index
I, and the value read is used as the prediction P.
Some time later, when the branch is resolved, an
update value U is delivered to the predictor and
written into the same location indexed by I. The
static parameters (w,d) allow describing a class of
predictors of various sizes. The dynamic parameters
(I,U) are partitioned between the input arguments,
listed first, and the update arguments, listed after the
semicolons (;). Using of these predictors can be
thought of as inputting a series of index (I), generating
a series of predictions (P) and, when the prediction
resolves, updating the predictor's state (U). By using
specific values or expression as the input to the
predictor, it can generated a variety of predictors. The
classical 1 bit predictor can be represented in the BP
language as:

Onebit[d](PC;T) = P[1,d](PC;T)

where,
PC = current Program Counter (index value)
T = branch resolution (update value)

(0-> not taken, 1 -> taken)

Also it can be defined the predictor “Onebit” with
parameter d, input PC and update value T. This
predictor can be parameterised by its depth noted d.
For example if it is chosen d = 2048 (2K) it can be
written:

Onebit[2048](PC;T) = P[1,2048](PC;T)

In the same formal manner it can be developed more
complex structures. So, below is presented using the
BP syntax, an array of n-bit saturating counters each of
which counts up or down based on their update value.

Counter[n,d](I; T) = P[n,d](I; if T then P+1 else P-1)
The adding and subtraction operations are in this case
saturating operations. If we combined this counter
with function MSB – which return the most significant
bit of a value - it can described well known predictors
like:

Twobit(d)[PC; T) = MSB(Counter[2,d](PC; T))

and respectively

Twobit(d)[PC; T)=MSB(P[2,d]((I; if T then P+1 else
P-1)).

This designing approach is based on automatic
search for predictors using some Genetic
Programming concepts. Genetic programming is
derived from Genetic Algorithms that represent a
method for efficiently searching extremely large
problem spaces. A genetic algorithm encodes
potential solutions to a given problem as fixed -
length bits. In the BP representation each bit
represents a language atom (function, memory,
terminal etc.). To generate the initial population is
necessary to create the individuals. Each individual
is created using a random algorithm. Individuals are
represented by a tree structure, which is easily
translated into a corresponding expression in the BP
language and viceversa. First, it's necessary to
evaluate the fitness – prediction accuracy in this case
- of each individual through branch predictor
simulation. The next step consists in creating new
individuals derived from old ones by applying
genetic operators that recombine the components of
the old individuals in different ways. In this manner
will be developed a new generation of genetic
branch predictors. The individuals that serve as
inputs to the genetic operations are chosen with a
probability based on their fitness value. Individuals
with a higher fitness value have a higher probability
of being chosen, so that they may appear many more
times than individuals of lower fitness value. This
means that the next generation will contain many
individuals having one or more components from
successful individuals, which makes it likely for
having a better average fitness rate than the previous
generation. By repeating this process many times,
are produced successive generations. According to
the authors, somewhere between 15 and 30
generations the experiments converge to a few
distinct predictors. From the prediction accuracy
point of view they are comparable with de most
advanced human designed branch predictors.
Unfortunately, they are logically much more
complex and probably not directly implementable
(Emer and Gloy, 1997). Also the computing process
is very time consuming, therefore there are
necessary to be used powerful computer systems.
However, in our opinion, the paper opens a new era
in branch prediction research and, more generally, in

finding new innovative efficient digital structures,
useful in different Computer Engineering fields.

6. CONCLUSIONS

According to our opinion, the present-day research
paradigm in Computer Architecture field is too
specialised and therefore, too limited. The
corresponding research tools are quite old. It’s
necessary that computer architects to be more
opened at other Computer Science areas and
research methods, in order to enlarge their view and
to improve their results. During this paper we
presented the necessity of a more integrated
approach in Computer Architecture field where – as
we previously claimed – the present day paradigm
must be enlarged and improved. More precisely, we
consider that using some more mature theoretical
research tools, belonging to different Computer
Science fields, could be an excellent alternative
approach in the present - day Computer Architecture
research methodology. This new research idea is
concretely exemplified by considering as an
example, the branch prediction challenge, through
some very original papers, unfortunately not very
well-known. So, firstly it’s presented the neural
dynamic branch predictor that uses a
backpropagation neural network in order to make
predictions. Subsequently, it's presented another
interesting paper that also uses a neural net related to
the block replacement decision in a cache memory.
After this, it's analysed a markovian branch predictor
first proposed by T. Mudge (Mudge et al,1996). This
branch predictor generalised the well-known Two
Level Adaptive Branch Predictors. Finally, it's
briefly analysed, a very original paper that proposes
an innovative technique for developing branch
prediction schemes using some genetic
programming concepts.

From our point of view, an important common
merits of all these researches consist in integrating a
pure certain Computer Architecture problem with
other interesting theoretical Computer Science areas
and methods. Therefore, all these presented papers
are exemplifying our initial idea: progresses in
Computer Architecture research are possible in the
nearest future, using a synergism between different
mature science fields and techniques. It's essential
trying to explore the potential benefits that could be
realised through a cross-fertilisation of ideas
between Computer Architecture and other Computer
Science domains. We think that other similar
original approaches, like those presented here, are
very useful in this new Computer Architecture era.

ACKNOWLEDGMENTS

This work was supported in part by the Romanian
National Agency of Science, Research and
Technology grant ANSTI No. 6229 (B18) / 2000,
respectively by the Romanian National Council of
Academic Research grants CNCSIS No. 8 / 2000.
Our gratitude to Professor Gordon B. Steven and Dr.
Colin Egan from the University of Hertfordshire,
UK, for their very useful and highly appreciated
support, suggestions and encouragement related to
our Instruction Level Parallel Processors research.

REFERENCES

Calder B., Grunwald, D., Lindsay, D. – Corpus
based Static Branch Prediction, ACM Sigpon
Notices, vol. 30, No. 6, June, 1995.

Emer J., Gloy N. – A Language for Describing
Predictors and it’s Application to Automatic
Synthesis, ISCA97, Denver, USA, 1997.

Hennessy J. – The Future of Systems Research,
Computer, August 1999.

Khalid H. – A New Cache Replacement Scheme
based on Backpropagation Neural Networks,
Computer Architecture News, May, 1995.

Lepak K., Lipasti M. – On the Value Locality of
Store Instructions, ISCA00, Vancouver,
Canada, 2000.

Mudge T. Chen, I., Coffey, J. – Limits to Branch
Prediction, Technical Report, University of
Michigan, January 1996.

Patt Y., Patel S. – Introduction to Computing
Systems: From Bits and Gates to C and
Beyond, McGraw-Hill, 2001.

Sodani A. – Dynamic Instruction Reuse, PhD
Thesis, Univerdity of Wisconsin – Madison,
USA, 2000.

Steven G., Morales R. A. – Using Neural Networks
to Perform Dynamic Branch Prediction in a
High Performance Superscalar Architecture,
Technical Report, University of
Hertfordshire, UK, January 2000.

Stiliadis D., Varma A. – Selective Victim Caching:
A Method to improve the Performance of
Direct Mapped Caches, Technical Report,
University of California, 1994.

Vintan L., Steven G. – Investigating a New
Dynamic Neural Branch Predictor,
Transactions on Automatic Control and
Computer Science, vol 45, no. 4, Timisoara,
Romania, 2000.

Yeh T. Patt Y. – Alternative implementations of
Two Level Adoptive Branch Prediction, 19th

Annual Int’l Symposium on Computer
Architecture, 1992.

