
INVESTIGATING NEW BRANCH PREDICTORS THROUGH

QUANTITATIVE APPROACHES

Lucian N. VINTAN, Adrian FLOREA
University “L. Blaga”, Department of Computer Science, Str. E. Cioran, No. 4, Sibiu-2400, ROMANIA,

Tel./Fax: ++40-69-212716, E-mail: vintan@cs.sibiu.ro,

Abstract: During this work we investigated through a trace driven simulation method two distinct approaches in
branch prediction. In our first approach the main idea is that the most predictable branches to be predicted based on a
Static Prediction Table and the other branches – most difficult predictable - to be predicted based on a classical Two
Level Adaptive Branch Prediction Scheme. The obtained results are quite encouraging because the proposed hybrid
predictor is less complex and obtains a similar performance compared to a classical dynamic predictor. Also we
investigated through the same trace driven simulation method some Markov – PPM branch predictors, based on the
general PPM (Prediction by Partial matching) algorithm. We studied in this context the influence of the HRg’s
(Global History Register’s) length and we developed a comparison between a Markov predictor and a classical one.
Also we compared a complete PPM predictor with a simplified one, most feasible to be implemented in hardware and
the obtained prediction accuracies are quite identical. Therefore we conclude that similar simplified PPM predictors
could be a better performance/cost alternative to the classical Two Level Adaptive Branch Predictor.

Key Words: Multiple Instruction Issue, Branch Prediction, Prediction by Partial Matching, Trace Driven Simulation

1. INTRODUCTION

As the average instruction issue rate and depth of the
pipeline in multiple instruction issue (MII) processors
increase, the necessity of an efficient hardware branch
predictor becomes essential. Very high prediction
accuracies are necessary, because taking into account
the MII processors characteristics as pipeline depth or
issue rates, even a prediction miss rate of a few percent
involves a substantial performance loss.

The first efficient approach in hardware (dynamic)
branch prediction consists in Branch Target Buffer
(BTB) structures [Per93]. BTB is a small associative
memory, integrated on chip, that retains the addresses
of recently executed branches, their targets and
optionally other information (e.g. target opcode). Due
to some intrinsic limitations, BTB's accuracies are
limited on some benchmarks having unpropitious
characteristics (e.g. correlated branches).

In order to improve BTB's efficiency, Yeh and Patt
(1992) and independently Pan et al (1992) generalised
it through a new approach called Two Level Adaptive
Branch Prediction. According to [Yeh92], the Two
Level Adaptive Branch Prediction uses two distinct
levels of branch history information to make
predictions. The first level consists in the History
Register (HR), that contains the last k branches
encountered (taken/ not taken) or the last k
occurrences of the same branch instruction. The
second level consists in the branch behaviour of the
last l occurrences of the specific pattern of these
branches. It is implemented by a Pattern History Table
(PHT), that contains essentially the branch prediction
automaton (usually 2 bit saturating counters).

HR shifts left with a binary position when updated
according to the actual branch behaviour (taken=1/ not
taken=0). There is a corresponding entry in the PHT
for each of the 2k HR's patterns. The prediction of the
branch (P) is a function (f) of the actual prediction
automaton state St.

P = f(St) (1)

After the branch is resolved, HR is shifted left and the
prediction automaton state becomes St+1.

St+1 = g(St ,Bt) (2)

where g represents the automaton's transition function
and Bt represents the behaviour of the last branch
encountered (taken/ not taken). A lot of interesting
implementations of these correlated branch prediction
schemes are known [Yeh92, Pan92, Ega98].

These Two Level Adaptive Branch Prediction schemes
are very effective in predicting correlated branches
with high accuracy. It's well known that the average

prediction rate for these schemes, measured on nine of
the ten Spec benchmarks, is about 97%, while BTB
schemes achieved at most 94% on the same
benchmarks [Yeh92]. An interesting generalisation of
these Two Level Adaptive Branch Prediction schemes,
based on the universal compression/prediction
algorithm called "prediction by partial matching", is
given in [Mud96].

Our simulation work has been centered on the
Stanford integer benchmark suite, a collection of eight
C programs designed by Professor John Hennessy
(Stanford University), to be representative of non -
numeric code while at the same time being compact.
The benchmarks are computationally intensive with
higher dynamic instruction counts. All these
benchmarks were compiled by the HSA gnu C
compiler which targets the HSA instruction set. A
dedicated HSA simulator [Ste96] that generates the
corresponding traces simulated the resulted HSA
object code. Some characteristics of the used traces are
given in Table 1.

Benchmark Total instr. % Branches
(%Taken)

Short description

Puzzle 804.620 25(91) Solves a cube packing problem
Bubble 206.035 20(75) Bubble sorts an array
Matrix 231.814 9(97) Matrix multiplication

Permute 355.643 15(80) Recursive computation of permutations
Queens 206.420 19(50) Solves the eight queens problem

Sort 72.101 17(65) Quick sorts a randomised array
Towers 251.149 15(76) Solves Towers of Hanoi problem (recursive)

Tree 136.040 24(73) Performs a binary tree sort
Table 1. Characteristics of the HSA traces

The average instructions number is about 273.000 and
the average percentage of total instructions that are
branches is about 18%, with about 76% of them being
taken. Derived from HSA traces, special traces were
obtained, containing exclusively all the processed
branches. Each branch belonging to these modified
HSA traces is stored in the following format: branch's
type, the PC of the branch and it's target address.

2. COMBINING STATIC AND
DYNAMIC BRANCH PREDICTOR

In this paragraph we tried to combine into a new
prediction scheme two distinct branch prediction
principles: static and respectively dynamic branch
prediction. Firstly we developed a statistic for each
benchmark in order to learn how many time a static
branch is taken and respectively not taken. As an
example, below it’s presented a very short fragment
belonging to these laborious statistics (derived from
Tower benchmark). As it can be seen, branch at PC
(Program Counter)=64 was 4021 times taken (T) and
only 132 times not taken (NT), therefore having a

strong polarised behaviour (predictable branch). In
contrast, the next static branch at PC=65 seems to be
most hardly to be static predicted because it was 2190
times not taken and 4021 times taken. Based on these
profiling information we proposed to implement a
Static Prediction Table (SPT), addressed in parallel
with the Dynamic Prediction Table implemented as a
modified GAg (Global History Register - HR and
Global Pattern History Table) scheme, like in Figure 1
[Yeh92]. If the prediction is found in SPT the branch
is accordingly predicted, if not, it will be predicted
dynamically based on the GAg scheme (through one
classical 2 bit saturating counter).

PC=64 NT T
4153 132 (3.18%) 4021 (96.82%)

PC=65
6211 2190 (35.26%) 4021 (64.74%)

Of course, a SPT entry will contain principally a tag, a
static prediction bit (taken/not taken) and the target
address. SPT will be addressed by the branch’s PC and
obviously it will be loaded based on the profiling

information obtained after running the benchmark
(program). In our experiments we used small SPT
tables having only 12 entries and loaded with the most
polarised branches (being taken or not taken over
85%). Therefore the main idea is that the most
predictable branches to be predicted based on the SPT
table and the “lower polarised” branches – probably
less predictable - to be predicted based on a classical
Two Level Adaptive Branch Prediction Scheme (GAg
here).

Figure 2 presents obtained prediction accuracies for a
hybrid prediction scheme having a 12 entries SPT
table and a 32 entries GAg table (see also Figure 1) vs.
a GAg scheme having a Prediction History Table
(PHT) of 64 entries. At average through the hybrid
scheme it was obtained a prediction accuracy of
77.21% (including correct targets) and for the pure
dynamic scheme an accuracy of 77.32%, practically
the same performance for both schemes. This is very
encouraging from our point of view taking into
account that the hybrid scheme is much simpler and
also cheaper comparing to the “equivalent” dynamic
scheme. Therefore we consider that putting together
static and dynamic schemes could be a feasible
solution, in special related to cheaper microprocessors.
As our laborious simulation experiments point out,
similar hybrid branch predictors could be even better
than dynamic branch predictors, at the same cost.

3. A MARKOVIAN - PPM BRANCH
PREDICTOR

During this section we investigated through the same
trace driven simulation method a Markovian branch
prediction scheme, first introduced by Trevor Mudge
[Mud96]. The prediction is based here on the PPM
(Prediction by Partial Matching) algorithm that
represents an universal compression/prediction
algorithm. PPM has been theoretically proven optimal
in data compression and prefetching and also in some
speech recognition problems. The bases of the PPM
algorithm of order m are a set of (m+1) Markov
predictors. A Markov predictor of order j predicts the
next bit based upon the j immediately preceding bits
pattern (a simple Markov chain). More precisely, the
prediction process counts every time when that pattern
on j bits was found, if it was followed by a ‘1’ or
respectively by a ‘0’. The prediction is according to
the most frequent bit that follows the searched and
founded pattern. The prediction algorithm is
illustrated in Figure 3. PPM uses the m immediately
preceding bits to search a pattern in the highest order
Markov model, in this case m. If the search succeeds,
which means the pattern appears in the input sequence
seen so far, PPM predicts the next bit using this m-th
order Markov predictor. However, if the pattern is not
found, PPM uses the (m-1) immediately preceding bits
to search the next lower order (m-1)-th order Markov
predictor. Whenever a search misses, PPM reduces the

pattern by one bit and uses it to search in the next
lower order Markov predictor. This process continues
until a match is found and the corresponding
prediction can be made.
If we consider the search pattern for every Markov
predictor as a HRg (Global History Register) pattern, it
is proved [Mud96] that the complete PPM predictor
can be viewed as a set of Two Level Predictors, having
not one size of HRg but a set that spans m down to 0.
It’s obviously that this PPM branch predictor
generalise the Two Level Predictors. To implementing
this Markov predictor in hardware would require a
doubling of the hardware, straining the limits of
practicality. Trying to avoid this circuit complexity,
we investigate – for the first time according to our
knowledge – a simplified PPM branch predictor
consisted by only a Markov predictor of order m, quite
feasible to be implemented in hardware. In this case, if
the pattern (HRg content, on m bits) is not found in
the global history string (taken/not taken),
automatically the branch will be predicted as no taken.
Figure 4 presents the influence of the HRg’s length
(10 to 40 bits) on the prediction accuracy offered by
this simplified Markov predictor. The global history
string was considered here on 300 bits. More
interesting, Figure 5 shows clearly that a PPM branch
predictor outperforms an equivalent Two Level Branch
Predictor (GAg – having a HRg on k=5 bits like in
Figure 1, equal with the Markov predictor’s order),
results placed in a perfect concordance with those
published by other researchers [Mud96]. Table 2
presents an interesting comparison between a complete
PPM predictor and our proposed simplified PPM
predictor, earlier described. Surprisingly, in both cases
the obtained prediction accuracies are quite similar
that shows clearly that a simplified PPM predictor
outperforms a classical scheme and also is feasible to
be implemented in hardware. We strongly believe that
some similar simplified PPM predictors or our recently
proposed neural branch predictors [Vin99a,b], could
be original ideas in finding new efficient branch
prediction approaches.

4. CONCLUSIONS AND FURTHER
WORK

Firstly, we propose a new branch prediction scheme
that putts working together a static and a dynamic
branch predictor. At a lower cost, this hybrid predictor
obtained practically the same prediction accuracy like
a Two Level Adaptive Branch Predictor. This is very
encouraging from our point of view taking into
account that the hybrid scheme is much simpler and
cheaper comparing to the “equivalent” dynamic
scheme. Therefore we consider that putting together
static and dynamic schemes could be a feasible
solution, in special related to cheaper microprocessors.

Secondly, we investigated through the same trace
driven simulation method some Markov – PPM branch

predictors, based on the general PPM algorithm. We
studied in this context the influence of the HRg’s
length and we developed a comparison between a
Markov predictor and a classical one. Also we
compared a complete PPM predictor with a simplified
one, most feasible to be implemented in hardware and
the obtained prediction accuracies are quite similar for
both prediction structures. We conclude that using
general prediction algorithms like PPM and - based on
these mature approaches - implementing some
simplified hardware schemes, could be a good
alternative to the well known Two Level Adaptive
Predictors.

Because of the additional warm up time our models
are likely to perform less successfully with relatively
small benchmarks like Stanford. Anyway, the obtained
prediction accuracies are in a perfect concordance with
those obtained by other researchers that used Stanford
benchmarks in evaluating branch prediction [Ega98].
We would expect to show some improvement in
prediction accuracy using larger benchmarks like Spec
’95,98. Unfortunately, from financial reasons, at this
moment we aren’t able to use Spec or other larger
benchmarks.

As a further work we intend to continue to develop
and implement in more depth new hybrid branch
prediction schemes as an alternative to the complex
pure dynamic prediction schemes. Also we’ll intend to
develop, analyse and optimise through complex
simulation some
more efficient simplified PPM branch prediction
schemes. As a distinct new approach in branch
prediction, we’ll also try together with Professor’s G.
B. Steven Research Group in Advanced Computer
Architectures (University of Hertfordshire, UK) to

enlarge and improve our Neural Branch Predictor
[Vin99a], through a joint Royal Society Research
Grant.

ACKNOWLEDGMENTS

This work was supported in part by the Romanian
Ministry of Research and Technology grant MCT No.
4086/1998, 1999, respectively by the Romanian
National Council of Academic Research grants
CNCSU No. 391/1998 and CNCSU No. 489/1999.
Our gratitude to Professor Gordon B. Steven from
the University of Hertfordshire, UK, for providing
HSA Stanford traces and for his very useful
suggestions, guidance and encouragement related to
our Instruction Level Parallel Processors research.

Figure 1. A Modified GAg (Dynamic) Prediction Scheme

65,00%

70,00%

75,00%

80,00%

85,00%

90,00%

95,00%

100,00%

fbubble fmatrix fperm fsort fqueens ftower ftree fpuzzle media

Cu TS
Fara TS

 Figure 2. A comparison between dynamic and hybrid (static-dynamic) branch prediction

.

.

.

.

.

.

Entry String

0 1 1 1 0 1 1 … . 1 0 1 ?

Las t m b i t s

If found
m - th order M arkov p red ic to r

 I f not found

If not found

If not found

If found

If found
L a s t m - 1 b its (m-1) -th order Markov p r ed i c t o r

Last 1 bi t 1-s t order M arkov p red i c to r

0- th order M arkov pred ic to r

Figure 3. Prediction flowchart of a Markov - PPM predictor of order m

50,00%
55,00%
60,00%
65,00%
70,00%
75,00%
80,00%
85,00%
90,00%
95,00%

100,00%

fperm fsort fmatrix fbubble ftower ftree fqueens fpuzzle Media

S=10
S=20
S=30
S=40

Figure 4. The influence of the search pattern length (HRg) in a Markov branch predictor

Dim sir=5

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

fmatrix fsort fperm ftree ftower fbubble fqueens fpuzzle media

clasic
markov

Figure 5. A comparison between a dynamic and an “equivalent” Markov branch predictor

Average Prediction AccuracyNo of bits
of entry
string

No bits of
HRg

(Search
pattern)

Complete PPM
Implementation

Simplified PPM
Implementation

300 10 79.841% 79.783%
300 20 76.209% 76.063%
300 30 73.888% 73.682%
300 40 72.413% 72.165%
300 50 70.781% 70.498%
300 60 68.278% 67.976%
300 70 66.581% 66.253%
300 80 66.114% 65.760%

 Table 2. Complete Markov vs. Simplified Markov branch predictor implementation

REFERENCES

[Cha97] Chang P.Y., Hao E., Patt Y.N. - Target
Prediction for Indirect Jumps, ISCA '97 - Ann. Int.'l
Symp. Computer Architecture

[Ega98] Egan C. - Branch Predictor Report, University
of Hertfordshire, Department of Computer Science, UK,
November, 1998

[Eve96] Evers M., Chang P.Y., Patt Y.N. - Using
Hybrid Branch Predictors to Improve Branch
Prediction Accuracy in the Presence of Context
Switches, ISCA '96 (Ann. Int.'l Symp. on Computer
Architecture)

[Mud96] Mudge T.N., Chen I., Coffey J. - Limits of
Branch prediction, Technical Report, Electrical
Engineering and Computer Science Department, The
University of Michigan, Ann Arbor, Michigan, USA,
January, 1996

[Pan92] Pan S.T., So K., Rahmeh J.T. - Improving the
Accuracy of Dynamic Branch Prediction Using Branch
Correlation, ASPLOS V Conference, Boston, October,
1992

[Per93] Perleberg C., Smith A. J. - Branch Target
Buffer Design and Optimization, IEEE Transactions on
Computers, No. 4, 1993

 [Ste96] Steven G. B. et al. - A Superscalar
Architecture to Exploit Instruction Level Parallelism,
Proceedings of the Euromicro Conference, 2-5
September, Prague, 1996.

[Vin99a] Vintan L., Steven G.B. – A New Branch
Prediction Approach Using Neural Networks, The 6th

International Symposium on High Performance
Computer Architectures, Toulouse, France, January
2000

[Vin99b] Vintan L. – Predicting Branches through
Neural Networks: A LVQ and a MLP Approach,
University “L. Blaga” of Sibiu, Faculty of Engineering,
Dept. of Comp. Sc., Technical Report, February, 1999

[Vin99c] Vintan L., Egan C. – Extending Correlation
in Branch Prediction Schemes, International Euromicro
Conference, Milano, Italy, 8-10 September, 1999

[Yeh92] Yeh T., Patt Y. N. - Alternative
Implementations of Two Level Adaptive Branch
Prediction, 19th Ann. Internationall Symposium on
Computer Architecture, 1992.

