
SIMULATING SOME ADVANCED PROCESSING TECHNIQUES

INTO A SUPERSCALAR ARCHITECTURE

Adrian FLOREA, Lucian N. VINTAN,
University “L. Blaga”, Department of Computer Science, Str. E. Cioran, No. 4, Sibiu-2400, ROMANIA,

E-mail: vintan@cs.sibiu.ro,

Abstract: The main aim of this short paper is to
investigate multiple-instruction-issue in a high-
performance superscalar architecture, illustrating the
limits of some well-known technique (like dependence
collapsing and instruction bypassing) or the best solution
in that concern the cache architecture strategy. Also we
propose a new technique, named Multiple – Load for
improving processor performance in a superscalar
architecture. Our research use trace driven simulation
techniques to evaluate the processor performance.

Key words: Trace driven simulation, Superscalar, Cache,
Write Back, Write Through, Instructions Collapsing

1. INTRODUCTION

The main simulation techniques used to evaluate and
establish from a suite, the best processor pipeline
configuration. The entering parameter for these
techniques are benchmark programs (traces). We used
the traces obtained based on the eight C Stanford integer
benchmarks. These benchmarks were compiled through
the HSA (Hatfield Superscalar Architecture) compiler,
developed at the University of Hertfordshire, UK, by Dr.
G.B. Steven's Research Group. Further, the traces were
obtained using the HSA simulator, developed at the
same university [Ste96]. Based on these tools, we have
developed a trace driven simulator to investigate the
limits of some well-known techniques (like dependence
collapsing, instruction bypass using DWB – data write
buffer) or the potential of some new developed
techniques (like Multiple – Load) for improving
processor’s performance into a superscalar pipeline
architecture (with four stages: IF, ID, ALU/MEM,
WB). This technique called Multiple – Loads is based on
an additional information (memory addresses of
Load/Store instructions), available during the instruction
decode stage.

2. SIMULATION WORK
2.1. BENCHMARK PROGRAMS

The simulation work has been centred on the Stanford
integer benchmark suite, a collection of eight C
programs designed by Professor John Hennessy, to be
representative of non - numeric code while at the same

time being compact. The benchmarks are
computationally intensive with higher dynamic
instruction counts (the cube packing problem, the eight
queens problem, bubble sorts an array, quick sorts a
randomised array, the binary tree sort, matrix
multiplication, recursive computation of permutations,
Towers of Hanoi - recursive problem). Although, many
applications are not represented by the benchmarks,
including graphics, multimedia, critical hand-coded
operating system routines. All these benchmarks were
compiled by the HSA Gnu C compiler, which targets the
HSA instruction set. The resulted HSA object code was
simulated by a dedicated HSA simulator [Ste96], which
generates the corresponding traces.

The average instruction number is about 273.000.
The average percentage of total instructions that are
branches is about 13%, that are Load is still 18%, that
are Store is about 12% and that are arithmetic is about
57% [Flo98].

2.2. THE SIMULATION METHOD

Following our aims, we developed a dedicated trace
driven simulator [Vin99] that uses the above mentioned
traces. The most important input parameters for this
simulator are:
• FR – fetch rate – the instructions number that is
fetched from Instruction Cache: up to 16 IPC
(Instruction Per Cycle)
• IBS – instruction buffer size: up to 64 instructions
• Type and Size of Cache Memories (size of caches is
measured in location; a location of Instruction Cache
stores an instruction and a location from Data Cache
stores memory addresses)
• BLOC_SIZE – the size of the data cache block: up to
32 location
• IRmax – parallel issue capability – the maximum
number of instructions that can be dispatched
concurrently from the Instruction Buffer: up to 8 IPC
• Instruction Latencies (measured in cycles): up to 20
cycles
• Type and Number of Functional Units

During this research we use a direct-mapped split
(Instruction & Data) cache structure. Where not
specified, the results were obtained using an optimal
superscalar architecture [Flo98], with FR = 8, IBS = 16,
IRmax = 4, BLOC_SIZE = 8, N_PEN = 10 cycles

(N_PEN - cycles required to load a block from main
memory). We have also used a two-port data cache that
can be accessed simultaneously by two non-aliasing
Load/Store instructions.

The simulation results are presented in terms of
instructions per cycle (IPC) and we summarised them by
taking the harmonic mean over the benchmark set.
During the simulation we have used as a main metric the
average issue rate which encloses all simulated processes
and generates a synthetic and realist performance
indicator.

3. SOME RESULTS

A. Using write back strategy in Data Cache

There are two basic options when writing to the cache:
write back and write through. Both of them have their

own advantages. With write back, writes occur at the
speed of the cache memory, and multiple write within a
block require only one write to the lower level memory.
With write through, read misses never resuit in writes to
the lower level, and write through is easier to implement
than write back. Write through also has the advantage
that the next lower level has the most current copy of the
data. Therefore, I/O and multiprocessors are fickle: they
want write back for processor caches to reduce the
memory traffic and write through to keep the cache
consistent with lower levels of the memory hierarchy.

The simulation results show that write back strategy
is with 44.69% more performant than write through. In
our opinion, write back has a net advantage, eclipsed just
by a harder implementation, especially related to cache
coherence mechanisms into multiprocessor systems
[Hen96]. Thus, following our aims, the simulations used
the write back strategy.

SIZE_IC=128; SIZE_DC=2048;IBS=16; FR=8; IRmax=4;
N_PEN=10; NR_REG_GEN=4; BLOC_SIZE=8;

Two port Data Cache

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

fb
ub

bl
e

fs
or

t

fp
er

m

fp
uz

zl
e

fq
ue

en
s

fm
at

rix

ftr
ee

fto
w

er

m
ed

ia

Issue Rate

WRITE BACK

WRITE
THROUGH

Figure 1 Comparative study about processor performance depending on cache write strategy

B. Multiple Loads – a new technique for
improving processor performance

We are introducing now a new method for reducing the
cache miss penalty, called “multiple loads”. It is well
known [Hen96] that reducing the cache miss penalty
improves the processor’s performance. Assuming that
the target address of Load/Store instructions belonging
to the instruction buffer are known, it could be issued
multiple Load instructions, which are reading from the
same fetched data cache block if there are a no
intercalated Store instructions between these Loads. This
method could be applied in an Out of Order mechanism

with reservation stations for Load and Store instructions
or even in a Trace Processor[Vin99b].

Using this technique, the processing rate could be
involved by two factors: Size of Data Cache Memory
(SIZE_DC parameter – see Figure 2) and Instruction
Buffer Size (IBS parameter – see Figure 3). In a small
Data Cache, sumarised by fewer data cache blocks, is
likely to access the same block for several times; also, a
bigger instruction buffer is likely to retain more Load
instructions that access the same data cache block.

After simulation we got that the raising of SIZE_DC
parameter improves processor’s performance (Figure 2).

FR=8;IBS=32;SIZE_IC=128;BLOC_SIZE=8;
IRmax=4;NR_REG_GEN=4;

Cache Biport

0
0.4
0.8
1.2
1.6

2
2.4
2.8
3.2

fb
ub

bl
e

fs
or

t

fp
er

m

fp
uz

zl
e

fq
ue

en
s

fm
at

ri
x

ftr
ee

fto
w

er

m
ed

ia

Issue
Rate

SIZE_DC=64

SIZE_DC=128
SIZE_DC=512

SIZE_DC=1024
SIZE_DC=2048

Figure 2 Multi-Loads technique impact’s about processor performance depending on Size_DC parameter varying

FR=8;SIZE_IC=128;SIZE_DC=2048;BLOC_SIZE=8;
IRmax=4;NR_REG_GEN=4;N_PEN=10;

Cache Biport

0
0.4
0.8
1.2
1.6

2
2.4
2.8
3.2

fb
ub

bl
e

fs
or

t

fp
er

m

fp
uz

zl
e

fq
ue

en
s

fm
at

ri
x

ftr
ee

fto
w

er

m
ed

ia

Issue
Rate

IBS=16

IBS=32

Figure 3 Multi-Load technique impact’s about processor performance depending on Instruction Buffer Size
(IBS parameter) varying

The raises of Instruction Buffer Size from 16 to 32
locations, combined with Multi - Loads technique

involves a processor performance improvement with
only about 3% percents (Figure 3).

 IR=4; IBS=16; N_PEN=10; NR_REG_GEN=4;
FR=8;SIZE_IC=128;SIZE_DC=2048;BLOC_SIZE=8;

Cache biport pe date

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

fb
ub

bl
e

fs
or

t

fp
er

m

fp
uz

zl
e

fq
ue

en
s

fm
at

rix

ftr
ee

fto
w

er

m
ed

ia

Issue Rate

FARA MULTI - LOAD

CU MULTI - LOAD

Figure 4 Comparative study about processor performance depending on using or not of Multi-Load technique

Biported Data Cache

Biported Data Cache

Biported Data Cache

Without
Multi-Load

With
Multi-Load

Surprisingly, this technique involves only a 2% percents
growth about processing rate at average (very short). The
anomaly appeared is due to bubble’s benchmark (see
Figure 4). The explanation we got through NR_RAW
parameter statistics – computed in program, parameter
that represents the total number of Read After Write
hazards. After trace driven simulation, on all
benchmarks, except bubble, this parameter and implicit
the total number of execution cycles is getting down
using the Multi – Loads technique, but on bubble it
raises approximately with 10000 hazards. Considering
additionally at each RAW hazard at least one cycle
penalty it gets for processing rate a diminution value
than the case in which it doesn’t use the Multi – Loads
technique. Finally, this will have a negative effect about
processing performance at average. It must notice that
with this technique it doesn’t gain much time because all
Load instructions (sometimes except first) would execute
with hit in Data Cache as they access same block, and no
Store instruction doesn’t write in this block, additionally
appearing more RAW hazards. Although, the Multi –
Loads advantage is the possibility to execute in a cycle
more than IRmax instructions so that the total number of
execution cycles will get down.

C. The limitation of instruction number that
could be collapsed

Dependence collapsing represents a technique that
resolves execution data Read After Write hazards for

instructions requiring ALU operation. Dependence
collapsing can reduce the latency eliminating data
dependencies by combining dependencies among
multiple instructions into one complex instruction. This
technique improves the processor performance by
“restructuring” the data dependence graph. A general
scheme capable of collapsing involves arithmetic and
logical instructions. Instructions that will be collapsed
can be non-consecutive. The distance separating the
collapsed instructions is nearly always less than 8. There
are at least two possible implementation strategies
[Vas93]: the first run-time strategy, based on a
combining hardware mechanism of instructions from
prefetch buffer, and second static strategy, a software
combining realised by an instruction scheduler. Into a
previous work [Vin99], we implement run-time this
technique: in instruction buffer there are detected
possibly data dependencies and if it is possible then the
collapse is done under some certain rules (the
dependence is generate by an arithmetic instruction). In
the same paper [Vin99] we proved through trace driven
simulation method that dependence collapsing and
raising of instruction number that could be collapsed
(Comb_Instr - parameter) from 2 to 3 improves the
processor performance with about 22%. Although, this
growth of Comb_Instr from 3 to 6 is significantly limited
(under 3% – see Figure 6).

FR=8; IR=4; IBS=16;NR_REG_GEN=4; N_PEN=10;
SIZE_IC=128;SIZE_DC=2048;

Cache biport

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

fb
ub

bl
e

fs
or

t

fp
er

m

fp
uz

zl
e

fq
ue

en
s

fm
at

rix

ftr
ee

fto
w

er

m
ed

ia

Issue Rate

Fara combining

Cu combining

Figure 5 Processing rate on a two-port data cache using or not dependence collapsing

In the two-port data cache, dependence collapsing
improves processor’s performance with 8.51% at

average. The maximum rise is 26.34% on queens
benchmark (Figure 5).

Without
Combining

With
Combining

Biported Data Cache

SIZE_IC=128; SIZE_DC=2048;IBS=16; FR=8; IRmax=8;
N_PEN=10; NR_REG_GEN=8; BLOC_SIZE=8;

Two port Data Cache

0.0

0.8

1.6

2.4

3.2

fs
or

t

ftr
ee

fb
ub

bl
e

fm
at

rix

fq
ue

en
s

fto
w

er

fp
er

m

fp
uz

zl
e

m
ed

ia

Issue
 Rate

Comb_Instr=3

Comb_Instr=4

Comb_Instr=5

Comb_Instr=6

Figure 6 Impact of the Comb_Instr parameter raising about processor performance

D. Instruction bypass using DWB – data
write buffer

DWB is a small write buffer, which contains the virtual
address and data that must be written in Data Cache.
Assuming that DWB has enough ports for supporting the
worst situation (a lot of Store instructions, independent
and concurrent stored in instruction window), offering
then multiple virtual writing ports [Tat98] although, Data
Cache has one or maximum two reading ports and just a
single writing port. We set the writing latency in DWB
to 1 cycle and the number of cycles needed for writing
data from DWB to Data Cache to 2 or 3 cycles

(variable). Using DWB we eliminate the need of
serialising Store instructions with afferent penalties and
besides, through bypassing we can eliminate many
“Load after Store” hazards.

Variation from 2 to 3 cycles of DWB-latency implies
a diminution with 11.63% of processor performance.
That means the data writing process from DWB in Data
Cache must be hurried for improving processor
performance. Also, if the reading ports number raises
from 1 to 2 the processing rate is improved with 5%. The
simulation results show that bypassing technique at
average favouring by DWB improves processing
performance with 17.87% (Figure 7).

FR=8;IBS=16;IRmax=4;SIZE_IC=128;SIZE_DC=2048;
 BLOC_SIZE=8;NR_REG_GEN=4;N_PEN=10;WB;

UNIT_LD=1;UNIT_ST=1;

0

0,4

0,8

1,2

1,6

2

2,4

fb
ub

bl
e

fp
uz

zl
e

fp
er

m

fq
ue

en
s

fm
at

ri
x

ft
re

e

ft
ow

er

fs
or

t

m
ed

ia

Is s u e
Rate

C u D W B

Fãrã DWB

Figure 7 Processor performance improved with bypassing technique in DWB

Without DWB

With DWB

4. CONCLUSIONS AND FURTHER
WORK

The previous results point out consistently that a
substantial performance growth is possible by using
dependence collapsing. We show that the raising of
instruction number that may be combined (Comb_Instr)
from 2 to 3, has a more significant impact on processor’s
performance. Although, varying Comb_Instr parameter
over 3, doesn’t improve significantly the obtained
average issue rate. Regarding to write policy in data
cache we proved that write back is more adequate. The
new method for reducing the cache miss penalty,
“multiple loads” improves the processor’s performance
but this growth depends on execution pattern. Also, by
hardware bypassing of instruction favouring by DWB
the processing performance is increased at average with
17.87%.

In whole our simulations work we considered a
perfect branch prediction (ideal). For further research we
are concerned now to the necessity of an efficient
hardware branch predictor. Very high prediction
accuracy are necessary, because taking into account the
multiple-instruction-issue processors characteristics as
pipeline depth or issue rates, even a prediction miss rate
of a few percent involves a substantial performance loss.

ACKNOWLEDGMENTS

This work was supported in part by the Romanian
Ministry of Research and Technology grant MCT No.
4086/1998 and respectively by the Romanian National
Council of Academic Research grants CNCSU No.
391/1998 and No. 489/1999. Also we like to thank Dr.
Gordon Steven from University of Hertfordshire, UK,
for providing the HSA Stanford traces.

REFERENCES

[1][Vin99] Vintan L., Florea A., Steven G. – Advanced
Techniques For Improving Processor Performance In A
Superscalar Architecture, CSCS-12 Conference,
Bucharest, May 1999.

[2][Hen96] Hennesy J., Patterson D. – Computer
Architecture, A Quantitative Approach, Morgan
Kaufmann Publishers, Second Edition, 1996.

[3][Flo98] Florea A. – Optimizarea proceselor de
scriere într-o arhitectura RISC superscalara de tip
Harvard, Teza de Masterat, Sibiu, 1998 (co-ordinator L.
Vintan).

[4][Ste96] Steven G. B. et al. – A Superscalar
Architecture to Exploit Instruction Level Parallelism,
Proceedings of the Euromicro Conference, 2-5
September, Prague, 1996.

[5][Vin99b] Vintan L. – Architectura procesoarelor cu
paralelism la nivelul instructiunilor.O abordare
constructiva, Editura Academiei Române, Bucuresti,
1999.

[6][Vas93] Vassiliadis S., Phillips J., Blaner B. –
Interlock Collapsing ALUs, IEEE Transaction on
Computers, Vol. 42, No. 7, 1993, pp. 825 – 839.

[7][Tat98] Tate D., Steven G. - Adding a Cache
Simulator to the Hatfield Superscalar Project,
University of Hertfordshire, Technical Report, 1998.

