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Abstract: Solving optimization problems, regardless of the scope, involves knowledge of mathematical 
apparatus based on the techniques and methods that are not always simple (differential calculus, 
operational research, etc.) and concepts of artificial intelligence, machine learning, evolutionary 
computing, graph theory. These problems are NP-complete and very often the optimization process 
targets more than one objective, at least two, and they can have an antagonist behavior. As an example, 
we can consider a simple car design: two objectives - cost (production cost or fuel consumption) that 
should be minimized and performance (speed limit or reliability) which are to be maximized. Or, if we 
talk about a microprocessor design the multi-criteria analysis must targets: high performance, small 
integration area, small energy consumption having also constraints about thermal dissipation. Given 
the above, becomes more difficult to teach optimization methods, to communicate new concepts and 
skills in an informative and formative manner, and in the same time to be attractive for students. Thus, 
developing effective e-learning tools targeting evolutionary algorithms in order to solve optimization 
problems is a continuous challenge. Moreover, technology applied to education became a key issue in 
nowadays knowledge society and education represents an essential element for knowledge improvement 
and economy growth. In this work we try to tackle the above challenges by developing the ETTOP tool 
(E-learning Tool for Teaching Optimization Problems) in order to gain a better understanding and 
familiarity of the students with new advanced learning methods and tools in the Evolutionary 
Computing domains, and especially in the optimization methods field. The main aim of our work 
consists in highlighting of different approaches for solving mono and multi-objective optimization 
problems using interactive e-learning tools (non-Pareto techniques, Pareto techniques and techniques 
based on swarm behavior). Although our software tool is designed and developed as an Application 
Programming Interface (API) that allows each user to select an existing problem or define a new one, 
to customize the solution algorithm based on problem specific constraints that the users can construct 
themselves or take over from sets of predetermined functions and rules, in this stage we present only 
three case studies that we implemented. 

Keywords: Evolutionary Computing; Multi-objective optimization; Design Space Exploration; E-
learning; Education. 

I. INTRODUCTION 

The motivation of the chosen topic for this article is two-fold. First, ICT students must be 
involved in the development of new software tools, combining efforts and expertise to address a 
rapidly changing education landscape, shifting from being simply consumers of the technology to 
being its creators. Second, the multimedia and communication technologies evolution facilitated the 
use of e-learning in education on a large scale. Furthermore, facilitating the public access to 
educational tools aimed to solve optimization problems in various domains became a necessity. 



The classical educational approach in teaching evolutionary computing concepts is of limited 
applicability, being based largely on oral communication of professors. Although currently are 
available online many textbooks, scientific articles that describe and implement various evolutionary 
algorithms, however, a thorough understanding of the optimization methods based only on theoretical 
explanations or exemplified by pseudocode language, it is difficult from the perspective of a beginner 
student. Thus, teachers need to educate students so they gain technical and analytical skills for 
learning optimization methods based on evolutionary computation. Therefore, developing effective e-
learning tools targeting evolutionary algorithms in order to solve optimization problems is a 
continuous challenge. Moreover, technology applied to education became a key issue in nowadays 
knowledge society and education represents an essential element for knowledge improvement and 
economy growth [12]. Modern students (also called “digital natives” [13] or “Net-generation”) learn 
efficiently through discoveries individually or collaboratively with their colleagues. Rather they learn 
by doing and not by reading instructions from the manual or by listening to teachers [8].  

Consistent with the previously expressed fundamental challenges, our developed application is 
designed to help not only in learning but also allows its extension by students, by proposing their own 
solutions to optimization problems in various fields (computer science, electronics, mechanical 
engineering, logistics, etc.). In this work we try to tackle the above challenges by developing the 
ETTOP tool (E-learning Tool for Teaching Optimization Problems) in order to acquire a better 
understanding and familiarity of the students with new learning methods and tools in the Evolutionary 
Computing domains, and especially in the optimization methods field. The main aim of our work 
consists in highlighting different approaches for solving single- and multi-objective optimization 
problems using interactive e-learning tools. The Net-generation students may benefit from our 
application since they can start from a certain type of optimization algorithm or from a certain type of 
problem and develop new solutions/ methods inside of the ETTOP tool, or define a new problem, 
customizing the solution algorithm based on problem specific constraints that the users can construct 
themselves or take over from sets of predetermined functions and rules. In this stage we present only 
three case studies that we implemented: 

 Solving the Traveling Salesman Problem (TSP) (finding a shortest closed tour which visits 
all the cities in a given set). 

 Optimizing geometric parameters for cylindrical machine parts. 
 Developing an automatic Design Space Exploration (DSE) tool dedicated to the PowerPC 

superscalar architecture. In order to reduce the simulation time we selected the PSATSim 
simulator that offers as outputs both performance and energy dissipation statistics, allowing 
thus a multi-objective analysis [16]. 

We developed the following multi-objective optimization techniques: 
1. The first approach uses non-Pareto optimization techniques: Weighted-Sum approach 

[5], the VEGA algorithm (Vector Evaluated Genetic Algorithm) [15]. 
2. The second approach uses Pareto optimization techniques: NSGA-II (Non-dominated 

Sorting Genetic Algorithm) [1]. 
3. The third approach uses bio-inspired optimization techniques based on swarm behavior: 

PSO (Particle Swarm Optimization) [4], SMPSO (Speed-constrained Multi- objective 
PSO) [10] and ant colony optimization (ACO) [2]. 

From a didactical point of view, the ETTOP tool has benefits in the learning process because it 
helps students to observe the influence of many parameters on the evaluated model. Some important 
parameters that may be varied are: the optimization technique, the features of the genetic algorithm 
(GA) such as the length and type of solution, the population size, the different variation operators – 
crossover, mutation – according to the representation of solution, the selection of parents and the 
survival selection, the termination condition, etc. The students can observe the algorithm which 
converges quicker to the optimal solution as well as the advantage introduced by Pareto optimization 
techniques opposite non-Pareto methods. They can also observe the influence of the number of 
simulated generations on the evaluated metrics. Because the evolutionary algorithms are stochastic, 
even the starting individuals may influence the obtained results and sometimes the convergence speed.  

The organization of the rest of this paper is as follows. In section 2 we shortly review the 
related work in the field of software tools used in the teaching process of optimization techniques. 
Section 3 describes a short theoretical background related to multi-objective optimization algorithms, 



whereas section 4 presents the application’s software design. Section 5 illustrates some simulation 
results. Finally, section 6 suggests directions for future work and concludes the paper. 

II. RELATED WORK 

In this section we present some well-known e-learning systems that exploit the multi-objective 
optimization algorithms. In [6] the author presents a system for the resolution of combinatorial 
optimization problems under multiple objectives. It allows the user to define metaheuristics and test 
them on machine scheduling problems. The interactions of the user with the system are supported by a 
graphical interface. The results can be easily visualized and compared using different plots. In [14] the 
authors provide a methodology for teaching structural design optimization. A computer program that 
integrates a genetic algorithm based optimal design methodology, with structural analysis and design 
capabilities, is made available to the students. They solve the design problem using a combination of 
manual iterations and the semi-automated design features available in the program. In [9] the authors 
present a tool which enables the users to apply a certain nature analogous technique to a certain 
problem without constructing an own program. The tool consists of shells evolutionary algorithms, 
cellular automata, Boolean networks, artificial neural networks and fuzzy-expert-system. The shells 
are parameterized and allow introducing even problem specific rules. Unlike these works, our ETTOP 
tool can be used both in terms of teaching and research. It can run various optimization applications by 
simply mapping problem to a corresponding form of solution’s representation, selecting then single- or 
multi-objective optimization algorithms. We consider that our work is in the European trend of 
Framework projects that target the research’s extension in advanced education field using modern 
learning technologies [12]. 

III. MULTI-OBJECTIVE OPTIMIZATION ALGORITHMS 

Usually, real-world problems have more than one objective function. Since these functions are 
often conflicting to each other, there are different optimal solutions corresponding to different 
objectives. Therefore, there is not only one optimal solution, rather a trade-off optimal solutions set, 
generally known as “Pareto-Optimal” solutions (named after the Italian economist Vilfredo Pareto 
[11]). None of these solutions can be considered to be better than any other with respect to all 
objective functions. Based on how the objectives are integrated within, the multi-objective algorithms 
may be classified as: non-Pareto, Pareto and Bio-inspired techniques. Since nearly all the algorithms 
are detailed in the literature we will only illustrate their role and also the differences between them. 

3.1. Non-Pareto Techniques 

In order to support the students and make the transition easier from single-objective 
optimization genetic algorithms to the multi-objectives, first we considered traditional techniques 
(non-Pareto). Among these, we have implemented: Aggregating approaches and VEGA algorithm. 

Algorithms that fall in the Aggregating approaches category combine all the objectives of the 
problem into one single objective. The effect is that the multi-objective problem is transformed into a 
single-objective one and single-objective algorithms can be used. In order to achieve a set of solutions 
approximating the Pareto-optimal set it requires performing several runs with different parameter 
settings. Under this category we implemented the Weighted-Sum method [5]. The main disadvantages 
of this technique are the difficulty of choosing the weights assigned to objectives, and the 
impossibility of finding all solutions for problems having non-convex Pareto-optimal front. 

The Vector Evaluated Genetic Algorithm (VEGA) [Sch84] represents the first multi-objective 
genetic algorithm built as an extension of the simple genetic algorithm with Roulette Wheel Selection 
mechanism. The whole population is randomly and equally divided to the number of objectives, each 
sub-population being subject to selection mechanism according with the assigned objective. After 
selection, these sub-populations would be shuffled together to obtain a new population of original size, 
on which the GA would apply the crossover and mutation operators in the usual way. The main 
drawback is that the population tends to converge towards solutions that are top in one objective, but 
very weak in others. 

 



3.2. Pareto Techniques 

The NSGA-II is a fast multi-objective algorithm with elitism introduced in [1] that removes 
some disadvantages of previous version (NSGA) such as high computational complexity for large 
populations and the diversity loss. Starting from a parent population, the algorithm performs crossover 
and mutation to obtain the offspring population. The two populations are combined into a single one 
on which is performed a non-dominated sorting to identify different Pareto fronts (elitism). The ranks 
and the crowding distance (density of individuals surrounding a particular one) guide further the 
selection process in order to form the next population. The binary tournament crowding selection 
mechanism considers an individual to be better than another if and only if it has a lower rank or, 
having the same rank, if it has a higher crowding distance. The diversity among non-dominated 
solutions is introduced by using the crowding comparison procedure during the population reduction 
phase. As disadvantage, the crowded comparison can restrict the convergence and also the non-
dominated sorting is performed on double population size. 

3.3. Bio-Inspired Techniques 

The PSO technique is inspired by social behavior (particularly related to the transmission and 
sharing of information) of living beings such as flocks of birds, swarms of bees or birds, schools of 
fish [4]. The artificial search process is provided by a set of “particles” (similar with the chromosomes 
in GA) whose movement is characterized by a “velocities” that change over time depending on the 
characteristics of the entire system. These algorithms enable quick finding optimum but have difficulty 
in avoiding local minima. Population is called “swarm”. These particles fly through the search space 
following the best particle at that time. The position of a particle is given by the current values of its 
parameters. Each particle tries to approach the best particles. To achieve this, its parameters are 
modified. In order to change the position, it is considering both the global best particle (leader) of the 
moment and the best local position it had in its history. After this change, the particle will have a new 
position and should be evaluated again. After all particles have been evaluated, a new leader is 
selected, each particle’s personal best is updated and the process is restarted. In multi-objective 
algorithms can be more leaders at some point of time. Unlike GA, PSO has no variation operators such 
as crossover and mutation; through combination of local search methods with global search methods, 
PSO attempts to balance exploration and exploitation. 

The SMPSO algorithm [10] allows producing new effective particle positions in those cases in 
which the velocity becomes too high using a velocity constriction mechanism. Somewhat similar to 
genetic algorithms, SMPSO uses an external archive to store the non-dominated solutions (leaders) 
found during the search and a density estimator (crowding distance) in the leader selection stage: 
binary tournament that choose the leaders taking into account the crowding distance. Other features of 
SMPSO include the use of polynomial mutation as a turbulence factor. 

ACO is a heuristic technique inspired by biological systems for solving computational 
problems which can be reduced to finding good paths through graphs [2]. The ants are simple agents 
that, in TSP problem, build solutions moving from one city to another according to the graph problem, 
using artificial pheromones. It performs better against other global optimization techniques such as 
neural net, simulated annealing and can be used in dynamic applications. 

IV. APPLICATION SOFTWARE DESIGN 

4.1. ETTOP Software Architecture 

Through this paper we intend to expand the jMetal.NET platform with new optimization 
techniques (non-Pareto, Pareto and bio-inspired approaches) highlighting the differences between 
them. The focus is not set on using the ETTOP tool but rather on understanding the software 
implementation details and the possibility of extending the framework with new problems to be 
solved, having different number of objectives, with new metaheuristics. 

The software solution consists in two basic projects: GAFramework and jMetal.NET. The first 
contains the application graphical user interface (GUI) which allows selecting the algorithm’s 
configuration class, the optimization problem, and facilitates viewing and comparing the obtained 
results and viewing the values of individuals and of objectives. The second project’s goal was to 
provide C# implementation of jMetal (a Java framework for multi-objective optimization with 



metaheuristics) [3] by porting this library on .NET platform. It contains a subset of algorithms and the 
way they are setup, a number of problems and their subsets of solution representations, and the genetic 
operators from original library. 

 

 

 

Figure 1. Application class diagram 

 

 
 

Figure 2. ETTOP Packages 

 

In figure 1, in boxes, shaded, are illustrated the author’s contributions in each class. First, the 
existing optimization algorithms NSGA-II and SMPSO were implemented in an efficient manner by 
parallel code sections (for simultaneous evaluation of the fitness function). Then, non-Pareto methods 
(VEGA and Weighted-Sum) and Bio-inspired (PSO and ACO) were developed. We proposed and 
solved new problems – TSP (single objective optimization), PSATSim and Cylindrical machine part 
(both of them being multi-objective optimization). For the first two, it was necessary to implement 
new representations for solutions that did not exist in jMetal.NET library (permutation and vector of 
integers). We implemented variation operators (crossover and mutation) specific for these two 
problems (see also figures 3a and 3b). Also, we implemented some quality metrics (Hypervolume, 
Epsilon and Spread [3]) that did not exist in jMetal.NET library. 

Since genetic algorithms exhibit the feature to be embarrassingly parallel problems, requiring 
little or no effort to separate the problem into a number of parallel tasks, we parallelized the population 



evaluation in order to apply parents’ selection mechanism. This is possible using the Parallel class 
from .NET framework (System.Threading.Tasks namespace) that contains specific implementations of 
for and foreach loops using multiple threads. A notable difference is that Parallel.For is just a normal 
static method with three arguments, where the last argument is a delegate expression (lambda function 
which is inline defined) whose input parameter (the i variable) will be incremented automatically by 
the framework. This delegate captures the unchanged loop body, which makes it particularly easy to 
experiment with introducing concurrency into a program. For a correct parallel evaluation, it requires 
the elimination of some specific dependencies. Parallel.For must be applied to variables that are not 
affected in loop body by critical sections. 

#region PARALLEL 
                object sync = new object(); 
                Parallel.For(0, populationSize, i => { 
                     Solution newSolution = new Solution(Problem); 
                     Problem.Evaluate(newSolution); 
                     Problem.EvaluateConstraints(newSolution); 
                     lock (sync) 
                          population.Add(newSolution); 
                });  //end of Parallel.For 
                evaluations += populationSize; 
#endregion 

The simulation results illustrate the advantages of multicore architectures. The execution 
speed in case of parallel evaluation decreases linearly with the number of cores. Because our 
application aims the educational aspects and not necessarily the research aspects and due to the time 
consuming iterative methods as the generation number increases, we limited this statistic to 4 
generations and all the results that we reported further were made using parallel evaluation. In the 
table below we reported results on PSATSim optimization problem and NSGA-II algorithms, using a 
hardware platform with AMD Athlon II X4 630 processor, 2.8 GHz, 4 GB RAM internal memory. 
 

ITERATIVE vs. PARALLEL CHROMOSOME EVALUATION 
 

Generation 1 2 3 4 
Iterative execution time [s] 145 290 443 574 
Parallel execution time [s] 47 92 133 190 

 

During the implementation phase we encountered some issues. Invalid input combinations 
caused the PSATSim simulator to crash without giving some insights. Thus, we had to implement 
restrictions (validity checks) after applying the crossover and mutation operators and in the population 
initialization phase. Also, because the expression of results is very important in assessing the 
correctness of program implementation, or at least to see if the intuition is confirmed, and, due to the 
multitude of generated results difficult to be visualized and compared, another issue was to implement 
a simple visualizer for one or many results (Pareto Fronts) in case of multi-objective optimization 
problems. Based on Newtonsoft.JSON and ZedGraph packages (see figure 2) we scan the RESULTS 
folder, open the selected files and serialized information in human-readable format allowing further 
2D graphical representation or creating spreadsheets such as Excel to plot or other operations. The 
zoom (in / out) operations can be done using the mouse wheel and the pan operation can be done by 
clicking the mouse wheel and moving it. Clicking a point on the plot will result in displaying a popup 
that will contain the objective values of that point (chromosome) but also the variables (genes) that 
have produced that output (figure 4a). 

4.2. ETTOP: GUI and System Requirements 

The ETTOP tool was implemented in C#, Visual Studio 2012 Express edition. In order to take 
advantage by parallel evaluation of chromosomes when NSGA-II, SMPSO and VEGA metaheuristics 
are applied, hardware systems with larger number of cores are recommended. 

Before running, the user should configure ETTOP in order to establish the problem that will 
be solved (see Figure 3), the objectives (their number and what is to be maximized or minimized), if 



there are some domain constraints (what non-negotiable conditions must be met – restrictions that if 
are not accomplished will lead to infeasible solutions). With respect to the DSE dedicated to the 
PowerPC superscalar architecture, one restriction refers to the size of the instruction window that 
should be greater than the instruction fetch rate. Other restrictions were implemented according with 
[7]. Then, the user selects the optimization methods (Pareto, non-Pareto, bio-inspired) and the specific 
parameters (population size, generation number or other stopping criteria, mutation and crossover type 
and mutation and crossover probability). After choosing the problem, the program extracts the number 
of variables that encoded each solution and the number of objectives. Then they are printed on the 
main form (figure 3a).  

 

 
 

Figure 3. (a) User interface for configuring ETTOP and (b) Solving TSP through three different 
approaches (Greedy, GA and ACO) 

Figure 3b illustrates the GUI that we obtain when from Figure 3a we select the radio button 
“Single-Objective” and we choose the “TSP – Traveling Salesman Problem” and then push the 
“START” button. In the upper left corner we have displayed the city distances. Under this panel, we 
have a section from where we can select the number of cities, a starting city and a button to generate 
random distances. Also, on the left side, we have 3 sections: Greedy, Genetic and ACO. In each one 
we have a button to start the algorithm, a list with the cities order, the cost and time. In the upper right 
corner we display the histogram with the evolution of Genetic/ACO algorithm against Greedy 
solution. On the right side, we have a section from where we can change the Selection method, 
Mutation and Crossover operators, the population size and the number of generations. In the bottom 
right corner, if we do not want to use random distances, we may load a file with predefined values. 

V. SIMULATION RESULTS 

 
 

Figure 4. (a) Pareto fronts and (b) Hypervolume comparisons 



In this section we present only few examples of results we may obtain with ETTOP. Figure 4a 
shows comparatively the obtained Pareto fronts after 20 generations by three runs (using NSGA-II, 
SMPSO and VEGA algorithms) of the PowerPC DSE problem. According to [17] the Pareto-optimal 
front should fulfill the following conditions: a good distribution of the obtained solutions and the size 
of the obtained non-dominated front should be maximized. As we can see, the less performing is the 
VEGA algorithm. The shuffling and merging of all subpopulations that VEGA performs involves 
averaging the fitness components associated with each of the objectives. The major drawback of 
objective switching in this case is that the population tends to converge to solutions which are superior 
in one objective, but poor in others. Regarding the NSGA-II and SMPSO analyzing the Pareto fronts 
we conclude that the differences are relatively small. The difference between algorithms comes in 
convergence speed, where the SMPSO performed the best since it has a great advantage over NSGA-II 
during first generations. Our claims are based both on our previous research work in microprocessor’s 
DSE [7] and on the currently obtained results (hyper-volume metric – see figure 4b). 

VI. CONCLUSIONS AND FURTHER WORK 

Testing various scenarios for multi-objective optimization problems would require a lot of 
time and hardware resources in order to obtain satisfying results. Thus, through parallel evaluation of 
fitness we increased the speed of execution. Besides, our approach represents a formative necessity 
since teaching optimization methods is mainly approached in a descriptive manner. Through the 
GAFramework, students have the opportunity to be creative and innovative in Evolutionary 
Computing or in other research and didactical domains of computer science. Our developed software 
tool facilitates understanding the theoretical aspects, allowing students to feel more trustful when 
solving optimization problems. The ETTOP tool can be used by students and researchers with little 
knowledge in the field of Evolutionary Computing, because the user interaction with the system is 
supported by a graphical interface easily configured and extended. 

For further work we are mainly concerned to solve the following issues: introducing other 
optimization methods – non-Pareto (Lexicographic ordering), Pareto (MOGA, SPEA2, etc) and 
mechanical design optimization problems. Also, we intend to attach to the GAFramework a database 
with test assignments, providing the possibility of testing the acquired knowledge. 
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