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Abstract 
 

The computer architecture domain challenges are mainly conceptual, architectural and finally 
technological. This Ph.D. thesis structured around eight chapters, presents aspects concerning the 
theoretical and experimental research (complex architectures design and simulation) realized by the 
author in instruction level parallel architectures. The main aim of this research is to find and 
develop new techniques and methods for exploiting and increasing the architecture’s ILP degree. In 
this work is approached a relative new speculative technique – dynamic value prediction, focalized 
on different resources (instructions, data, CPUs registers) and used to exploit the instruction and 
data redundancy existing in common-use programs. The technique was proposed to overcome the 
fundamental constraints of ILP processors, the declared goal being to compress the critical path 
from programs. The higher degree of value locality exhibited by hardware resources make the value 
prediction concept feasible to be implemented in silicon. Another problem solved in this Ph.D. 
thesis tries to implement modern prediction structures for indirect jumps and calls. Also using some 
simple testing programs (procedural and object-oriented), I showed that hardware and software 
“hemispheres” are only apparently disjoint, both of them having a common goal: increasing 
architecture’s ILP degree. 

The first chapter presents the motivation of the research carried out in the context of the 
tackled topic, as well as the evolution and the structure of the Ph.D. thesis. 

The second chapter entitled “Fundamental Constraints of ILP Paradigm. Solutions” starts by 
presenting the limits of instruction level parallelism paradigm: the producer limit (fetch bottleneck), 
the consumer limit (issue bottleneck, data-flow bottleneck), causes and solutions. A solution related 
to fetch bottleneck insists about Trace Cache concept, based on simultaneous prediction of multiple 
branches, fill units and selection logic. A great part of this chapter is concentrated around two novel 
techniques: a speculative one – dynamic value prediction and respectively, a non-speculative one – 
dynamic instruction reuse. Both of them try to reduce the negative effects caused by true data 
dependences between instructions (issue bottleneck). This section illustrates practically a state of 
the art related to instruction value predictors. These are analyzed in both a qualitative and a 
quantitative manner, measuring their performance and their limits. 

The third chapter describes the benchmarks (SPEC suites), the simulation methodology and 
the standard tools set used. I developed few cycle-accurate executions driven simulator derived 
from the sim-outorder simulator in the SimpleScalar tool set (a collection of compilers, assemblers, 
linkers, simulators, debuggers). The baseline superscalar processor supports out-of-order instruction 
issue and execution. I modified it to incorporate the indirect jumps’ predictors in order to measure 
target locality, and, respectively to predict targets for indirect jumps and calls. In addition, I 
developed a value predictor simulator dedicated both for different type of instructions and for 
processors’ registers. I also rebuild the GNU GCC compiler to generate object code for 
SimpleScalar architecture (MIPS compatible) in order to establish and study the qualitative 
relationship between object-oriented programming paradigm and indirect jumps / calls. To perform 
my evaluation, I collected results from different versions of SPEC benchmarks: integer and floating 
point SPEC’95 benchmarks, respectively the CINT SPEC2000 set. I simulated some SPEC’95 
benchmarks too in order to compare their behavior with that one involved by more recently 
SPEC2000. In other words, I intend to discover how these different benchmarks influence the 
indirect jumps predictors’ and value predictors’ micro-architectural features. 

The main aim of chapter four consists in investigating the two hemispheres, hardware and 
software, just apparently separated, in which the computer science researchers develop their activity 
in order to better understand indirect branch behavior and the corresponding prediction processes. 
Thus, I developed some analysis of C versus C++ languages from execution viewpoint on 
Instruction Level Parallel Architectures. In addition, I extracted some typical corpus of procedural 
and object-oriented languages that generate, after compilation, indirect jumps and calls. 

The history of processors marks out two paradigms for improving the performance based on 
software respectively on hardware. Despite their common goal – exploiting and increasing the 



Instruction Level Parallelism – the research community is split in two “almost separated” entities 
for accomplishing it. Whereas the computer designers sewer their efforts for exploiting / optimizing 
the existing processing techniques through laborious simulations on representative benchmarks in 
machine code format, without taking account of source code semantic, the compiler writers’ issue is 
to optimize the object code. Sustaining the last idea, D. Knuth himself, after analyzing the static and 
dynamic behavior of a large collection of Fortran programs, concluded that programmers had poor 
intuition about what parts of their programs were most time-consuming, and that execution profiles 
would significantly help programmers improve the performance of their programs. 

The idea that processor architecture interacts only accidentally with software domain is 
completely wrong, between hardware and software existing strong interdependences, unexploited 
appropriately yet. There are at least two reasons, which prove that the processors and the compilers 
design processes are made in the same time: 

?  The simulated benchmarks are compiled for some certain architecture (for example, 
GNUC Compiler from Linux can generate machine code for Intel or SimpleScalar 
architecture). 

?  The compiler should generate code for exploiting the architectural characteristics otherwise 
this code will be inefficient from execution time point of view. 

Object-oriented applications are considered now the biggest challenge both for compilers 
writers’ community and for microarchitectures designers. At compile time the code involving calls 
to library routines, to procedures defined in separately compiled modules, and to dynamically 
dispatch “virtual functions” in object-oriented languages, cannot be effectively optimized. Machine 
code usually has much less semantic information than HLL source code, which makes it much more 
difficult to discover control flow or data flow information. Control flow analysis of executable files 
can be difficult because determining the extent of jump tables, and hence the possible targets of the 
code derived from switch/case statements, can be difficult. In this work, I have analyzed SPEC’95 
benchmarks (entirely procedural) as well as some own test programs, two of them being object-
oriented. Based on simulation results there are detached some conclusions: 

?  Indirect jumps occur more frequent in object-oriented programs rather than in procedural 
programs. 

?  Late (dynamic) binding realized through polymorphism generates indirect function calls in 
object-oriented applications (C++, Java, Smalltalk). These languages promote a 
polymorphic programming style in which late binding of subroutine invocations is the 
main instrument for modular code design. Virtual function tables, the implementation 
chosen for most C++ and Java compilers, execute an indirect branch for every 
polymorphic call. More than that, in Java, instance methods are virtually declared by 
default. If they are not explicitly declared final, they can be overridden in subclasses. 

?  The presence of indirect jumps in procedural (C) programs is mainly due to the following 
two aspects: 
?  Indirect calls through function pointers (address). 
?  The possible targets of the code derived from some special switch/case statements. 
?  One of the reasons that favor the indirect jumps existing in programs is the presence of 

statically or dynamically library function calls (e.g. the qsort function from BorlandC 
Help and DLLs usage from desktop applications). 

In chapter five are illustrated the own contributions to indirect jumps / calls predictions. 
Starting from the necessity of implementing new performing indirect branch prediction schemes, 
but taking into account the hardware feasibility desiderate of them, I showed that a modified Target 
Cache structure, based on confidence mechanism and indexed with extended global correlation 
information, represents a more simpler and feasible solution that could replace the more complex 
PPM (prediction by partial matching) predictor. I also determined based on laborious simulations 
what is the optimum search pattern when different contexts are used. Using profile information, I 
developed a hybrid predictor with arity-based selection that improves indirect branch prediction 



accuracy reaching in average to 93.77% comparable with a more complex multi-stage cascaded 
predictor. 

Deep pipelines and fast clock rates are necessitating the development of high accuracy branch 
predictors. The most research in branch prediction is based on two closely related correlation 
mechanisms (local and global). The global method exploits correlation between the outcome of a 
branch and the outcome of neighboring branches that are executed immediately prior to the branch. 
In contrast, the local method depends on the observation that the outcome of a specific instance of a 
branch is determined not simply by the history of the branch, but also by the previous outcomes of 
the branch when a particular branch history was observed. Yet branch prediction is a specific 
example of a far more general time-series prediction problem that occurs in many diverse fields of 
science. It is therefore surprising that there has not been more cross-fertilization of ideas between 
different application areas. A notable exception is a paper by Mudge that demonstrates that all two-
level adaptive predictors implement special cases of the PPM algorithm that is widely used in data 
compression. Mudge uses the PPM algorithm to compute a theoretical upper bound on the accuracy 
of branch prediction, while Steven demonstrates how a two-level predictor can be extended to 
implement the PPM algorithm with a resultant reduction in the misprediction rate. Other researchers 
developed some more sophisticated predictors based on neural networks algorithms. 

A particularly difficult challenge consists in target prediction for indirect jumps and calls. 
Because the target of an indirect jump (call) can change with every dynamic instance of that jump, 
predicting the target of such an instruction is very difficult. From microarchitectural point of view 
object-oriented programming techniques exercise different aspects of computer architecture to 
support the object-oriented programming style. In the last decade the importance of indirect branch 
prediction increased even though, in the computing programs the indirect jumps and calls remain 
less frequent than the more predictable conditional branches. One of the reasons refers to 
predicative execution that implies decreasing of conditional branches number. The dimension took 
by the desktop, visual or object-oriented applications development (C++, Java – characterized by a 
large amount of indirect branches comparative to procedural programs), and respectively, the 
portability trend of many of them, as well as the usage of Dynamically-Linked Libraries, represent 
other reasons which illustrate that indirect branch prediction misses start to dominate the overall 
missprediction cost. Knowing that the Pentium4 equivalent processor performance degrades by 
0.45% per additional branch missprediction cycle and, additional, a very small number of static 
indirect branches is responsible for more than 90% of dynamic indirect jumps, results that the 
overall performance of architectures are very sensitive to indirect branch prediction. Since the 
prediction accuracy generated by classical schemes Branch Target Buffer or Last Value Predictor is 
less than 75% and the maximum value obtained by a feasible PPM predictor, reported in literature 
is around 90%, implies the necessity of implementing new performing indirect branch prediction 
schemes (hybrid or cascaded predictors, or even adapted from value prediction – contextual, PPM 
predictors). 

Next, in a systematic manner, I measured target localities associated with these indirect 
jumps, in order to estimate how predictable they are. I tried to determine an ultimate context 
predictability metric of indirect branches. As expected, the conclusion was very optimistic. The 
value locality concept, first introduced by Lipasti, represents the likelihood of the recurrence of a 
previously seen value within a storage location. Accordingly, in this case, it will say that an indirect 
jump (call) target value is local if it belongs to the previous K dynamic target instances of that 
certain jump (call). Obviously, a great target locality degree involves great prediction accuracy, too. 
In other words, the value locality degree obtained for K dynamic target instances represents the 
maximum achievable prediction accuracy using a context predictor of order K. Therefore, my 
approach establishes an analogy between value prediction and, respectively, indirect jumps target 
prediction. Statistical results based on simulations have proved that indirect jumps targets are 
characterized by higher degree of value locality (over 90% for K? 4). 

Due to higher degree of target localities associated with some indirect jumps, I predicted these 
indirect jumps and calls using some contextual value predictors, derived from the complete PPM 



predictor respectively the Target Cache predictor. The obtained results were better than that 
reported by other researchers that used more simplified context predictors. PPM predictor seems to 
be an almost ultimate limit of context target prediction, and, thus, a good frame for further deriving 
new practical prediction schemes. In my research I find that a complete PPM predictor having an 
associative indirect jump value prediction table with 256 entries generates average prediction 
accuracy between 89.33% and 91.58% depending on the context used in simulation: short history 
(the last 32 targets) and a rich history (the last 256 targets), the search pattern varying descending 
from of 4 to 1. 

Another goal of my research is to show that a modified Target Cache structure based on 
confidence mechanism and indexed with extended global correlation information represents a more 
simple and feasible solution that could replace the more complex PPM predictor. The Target Cache 
(TC) improves the prediction accuracy for indirect branches by choosing its prediction from the last 
N targets of the indirect branch that have already been encountered. When an indirect jump is 
fetched, both the PC and the globalHR (a history register that retains the behavior of last 
HRgLength conditional branches) are used to access the TC for predicting the target address. As the 
program executes, the TC records the target for each indirect jump target encountered. The 
proposed scheme, for set selection, uses the least significant bits of the word obtained by hashing 
(XOR) the indirect jump’s address (PC) and the globalHR. The most significant bits of the obtained 
output form the Tag. In the case of a hit in TC the predicted target consists in the corresponding 
address belonging to that TC set. In case of a missprediction after the indirect branch is resolved, 
the Target Cache entry is updated with its real target address. It is implemented a LRU replacement 
algorithm. I have implemented and simulated a P-way set associative TC, where P=1, 2, 4, 8. In the 
case of a miss in TC the prediction is considered wrong, it doesn’t propose any value and it is added 
a new entry in the respective set updating with the proper tag and the proper target, accordingly 
with the specified replacement algorithm. 

A common criticism for all the present two-level adaptive branch prediction schemes (applied 
to either conditional branches or indirect jumps) consists in the fact that they used insufficient 
global correlation information. There are situations when for the same static indirect branch and in 
the same globalHR context pattern it is possible to find different targets. If each bit belonging to 
globalHR will be associated during the prediction process with its corresponding PC the current 
indirect branch’s context becomes more precisely and therefore its prediction accuracy could be 
better. Next, I developed a path-based predictor, through extending the correlation information 
according to the above idea. Thus, the first level of history of Target Cache predictor records the 
path (the conditional branches’ addresses) leading to the current indirect jump. Extending the 
correlation information in this way suggests that at different occurrence contexts of a certain 
indirect jump it will access different sets from TC structure, reducing a significant amount of 
interferences and increasing the prediction accuracy. Compression of this complex information is 
possible and even necessary, taking into account the request of reasonable costs for these schemes. 

The next contribution follows up to improve indirect branch prediction accuracy by 
selectively ignoring some predictions. Therefore, I attached a confidence counter (degree of 
reliability) at every Target Cache location, together with a replacement mechanism based on LRU, 
confidence and, respectively, both of them. A confidence mechanism performs speculation control 
by limiting the predictions to those that are likely to be correct. A high confidence degree represents 
the continuous correct predictability in a given history of an indirect jump while the LRU field 
means its activity degree (how many times this branch was accessed). Both Confidence field and 
LRU field were implemented as saturating counter being represented on different number of bits. 
For exploiting this subsection results I used some new metrics, previously proposed in the literature 
but also I still introduced other. In this sense I use the prediction accuracy (Ap) metric as the 
probability that prediction generated by a high confident state to be correct. Usage represents the 
prediction performed degree, practically the number of cases when the automaton was in a high 
confident state, reported to the total number of indirect jumps. I introduced the predictors’ overall 
performance (P) metric as the product from Ap and Usage. I determined how are influenced this 



metrics by a parameterized threshold. The predictors’ overall performance generated by the new 
scheme proposed is only with 0.4% under the accuracy provided by a PPM predictor, but the 
scheme proposed is much simpler and more feasible to be implemented in hardware. 

Taking into account PPM’s complexity, I tried to implement a simplified PPM or a 
confidence-base hybrid predictor having as components two contextual predictor of different order. 
Knowing that only a small amount of the path information leading up to a branch is needed for 
prediction I tried to find what the optimum search pattern is when different contexts are used. Thus, 
I obtained that the markovian predictor has the best behavior in two different contexts: using a short 
history (the last 32 targets and a search pattern of 3) and a rich history (last 256 targets and a search 
pattern of 6). The values obtained (orders of Markov predictors) I used in developing a hybrid 
predictor with arity-based selection. I classified branches according to a dynamic measure, the 
number of different targets encountered in a running program, or branch’s arity. This is determined 
in a profiling run. The profile information table, completely associative retains the arity of every 
indirect jump and helps to select which component predictor will predict at every moment. The 
component predictors are a LastValue predictor for monomorphic (1 target) or duomorphic (2 
targets) indirect jumps, and respectively, the best contextual predictor, previously determined, for 
polymorphic branches (more than 2 targets). Both LastValue and contextual predictor are 
completely associative and indexed in the instruction fetch stage with indirect branch address (PC). 
The hybrid predictor with arity-based selection generated the best result. The new scheme improves 
indirect branch prediction accuracy reaching in average to 93.77%, comparable with a more 
complex multi-stage cascaded predictor. 

The excellent results obtained impose introducing and exploiting the hybrid and cascaded 
predictor in other computer architecture issues to increase the instruction and thread level 
parallelism: conditional branch prediction, instruction value prediction. As a further work, I will try 
to replace the arity-based selection hybrid predictor with a simple neural network that will select 
dynamically between ordinary component predictors (Last Value, Target Cache, contextual, 
hybrid). In addition, it could be studied the feasibility of an indirect branch predictor correlated and 
decision trees based. Another solution could appear from development of some “semantic 
predictors”, based on High Level Language applications’ information that I prove being important 
related to indirect jumps generation (polymorphism, indirect function calls, etc.). This might be a 
completely new approach in branch prediction domain, where HLL semantics are often hidden. As 
far as the architecture designers are concerned, their proposed schemes could be more efficient if 
not only the object code from benchmarks (“wear off by any semantic information”) is analyzed but 
they will also look “higher” towards high-level sources of simulated programs. 

In chapter six, I made some research and bring contributions in dynamic instructions value 
prediction domain. I implemented the value predictors described in chapter two for measuring the 
value locality degree and prediction accuracy exhibit by SPEC benchmarks. I also proposed an 
algorithm to quantify the speed-up obtained by a speculative microarchitecture that implements 
value prediction technique. As an original contribution, I extend the dynamic value prediction by 
introducing the concept of register centric prediction instead of instruction centric prediction. 

Value Prediction (VP) is a relatively new technique that increases performance by eliminating 
true data dependencies constraints. Value prediction architectures allow data dependent instructions 
to issue and execute speculatively using the predicted values. This technique is built on the concept 
of value locality, which describes the likelihood of a previously seen value’s recurrence within a 
storage location. Obviously, the utility of value prediction techniques is emphasized only in the case 
of a correct prediction otherwise, it determines structural hazards and a higher instruction’s 
execution latency. In this work, I applied dynamic value prediction to different types of instructions 
(arithmetical, logical, load and indirect jumps). The value localities obtained on some registers of 
MIPS architecture were quite remarkable leading to conclusion that value prediction might be 
successfully applied, at least on these favorable registers. The idea of attaching a value predictor for 
the processor’s favorable registers is original and might involve new architectural techniques for 
improving performance and reducing the hardware cost of speculative microarchitectures. The 



register value prediction technique consists in predicting registers’ next values based on the 
previously seen values. It executes the subsequent data dependent instructions using the predicted 
values and the speculative execution will be validated when the correct values are known. If the 
value was correctly predicted the critical path is reduced, otherwise the instructions executed with 
wrong entries must be executed again. 

I examine different favorable register selections and different basic value predictors in order 
to capture certain type of value predictabilities from SPEC benchmarks (’95 and 2000) to obtain 
higher prediction accuracies. The “last value” predictors predict the new value as the same with the 
last value stored in the corresponding register. Exploiting the correlation between registers names 
and the values stored within will decrease the instructions’ latencies. The stride predictors make a 
prediction by computing some function (algorithms) of previous values. The context-based 
predictors predict the value that will be stored in a register based on the last values stored in that 
register. A context is a finite sequence of values with repeated apparition like in a Markov chain. 
The predictors that implement the PPM algorithm represent an important class of context-based 
predictors. The predicted value is the value that followed the context with the highest frequency. A 
longer context frequently drives to higher prediction accuracy but sometimes it can behave as noise. 
A complete PPM predictor contains N simple Markov predictors, from 0th order to (N-1)th order. If 
the (N-1)th Markov predictor produces a prediction (the context is matched in the sequence) the 
process is finished, otherwise the (N-2)th order Markov predictor will be activated, and so on. A 
context-based predictor and respectively a stride predictor, working together, compose the hybrid 
predictor used. The context-based predictor had always priority; in this way, the value generated by 
the stride predictor was used only if the context-based predictor cannot generate a prediction. 

The simulations results show that there is a time-correlation between the names of the 
destination registers and the values stored in these registers. The simulations exhibit that the hybrid 
predictor optimally exploits this correlation with an average prediction accuracy of 85.44%, quite 
remarkable (on some benchmarks with values over 96%). Considering an 8-issue out-of-order 
superscalar processor, I showed that register centric value prediction produce average speedups of 
17.30% for the SPECint95 benchmarks, respectively of 13.58% for the SPECint2000 benchmarks. 

Obviously, this fixed prioritization is not optimal. Next, in order to increase the prediction 
accuracy is realized a dynamic prioritization based on some confidences. I introduced several 
different metaprediction structures, in order to properly select the current best predictor: two non-
adaptive metapredictors and an adaptive one, represented by a neural network. The experimental 
results obtained using metaprediction applied only to the best four favorable registers (having high 
value locality degrees) show an average prediction accuracy of 91.40%, measured on SPEC 
benchmarks. The accuracy gain obtained on these registers versus the old hybrid predictor is 2.27%. 

Chapter seven presents the most eloquent quantitative results and remarks from qualitative 
point of view. The results are structured on three levels: the first of them exhibits the indirect jump 
prediction depending on the predictions structures used (Target Cache, PPM, hybrid). The second 
class of results analyzes problems related to value locality and value predictions on different 
resources (instructions, data). The last class of results tries to prove the registers prediction concept 
feasibility. Simulations were realized partially under Windows operating systems and partially 
under Linux RedHat, using powerful execution driven simulators (developed by the author), very 
flexible, portable and extensible. 

The eighth chapter illustrates the scientific contributions of this work and the quantitative gain 
of every novel proposed techniques. Also, there are indicated some directions for future research. 
The problems approached in this Ph.D. thesis should be continue in order to solve other ILP 
problems, remained open, very interesting and connected with that presented here. 
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