
ADVANCED TECHNIQUES FOR IMPROVING INDIRECT BRANCH
PREDICTION ACCURACY

Adrian Florea and Lucian N. Vintan
Computer Science Department

“Lucian Blaga” University of Sibiu,
E. Cioran Street, No. 4, Sibiu-550025, Romania

Tel./Fax: +40-269-212716, E-mails: adrian.florea@ulbsibiu.ro, lucian.vintan@ulbsibiu.ro

KEYWORDS

Indirect branches / function calls, dynamic branch and
value prediction, execution-driven simu lation, SPEC
benchmarks, prediction accuracy, correlation
information, branch arity.

ABSTRACT

Deep pipelines and fast clock rates are necessitating the
development of high accuracy branch predictors. From
microarchitectural viewpoint, in the last decade the
importance of indirect branch prediction increased even
though, in the computing programs the indirect jumps
remain less frequent than the more predictable
conditional branches. One reason refers to predicative
execution that implies decreasing of conditional
branches number. The dimension took by the desktop,
visual or object-oriented applications development
(C++, Java – characterized by a large amount of
indirect calls comparative to procedural programs),
represents another reason which illustrates that indirect
branch prediction misses start to dominate the overall
misprediction cost. Since the maximum prediction
accuracy obtained by a feasible PPM predictor and
reported in literature is around 90% implies the
necessity of implementing new efficient indirect branch
prediction schemes. Thus, we developed a hybrid
predictor with arity-based selection that improves
indirect branch prediction accuracy reaching in
average to 93.77%, comparable with a multi-stage
cascaded predictor. We also showed that a modified
Target Cache structure based on confidence mechanism
and indexed with extended global correlation
information represents a more simple and feasible
solution that could replace the more complex PPM
predictor.

I. INTRODUCTION

Deep pipelines and fast clock rates are necessitating
the development of high accuracy branch predictors.
The most branch prediction research is based on two
closely related correlation mechanisms (local and
global). The global method exploits correlation between
the outcome of a branch and the outcome of
neighboring branches that are executed immediately
prior to the branch. In contrast, the local method

depends on the observation that the outcome of a
specific instance of a branch is determined not simply
by the past history of the branch, but also by the
previous outcomes of the branch when a particular
branch history was observed. Yet branch prediction is a
specific example of a far more general time series
prediction problem that occurs in many diverse fields of
science. It is therefore surprising that there has not been
more cross-fertilization of ideas between different
application areas. A notable exception is a paper by
Mudge (Mudge et al. 1996) that demonstrates that all
two-level adaptive predictors implement special cases of
the PPM (markovian) algorithm that is widely used in
data compression. Mudge uses the PPM algorithm to
compute a theoretical upper bound on the accuracy of
branch prediction, while Steven (Steven et al 1999)
demonstrates how a two-level predictor can be extended
to implement the PPM algorithm with a resultant
reduction in the misprediction rate. Other researchers
developed some more sophisticated predictors based on
neural networks algorithms (Jimenez 2002, Egan et al
2003, Seznec 2004).

A particularly difficult challenge consists in target
prediction for indirect jumps and calls. Because the
target of an indirect jump (call) can change with every
dynamic instance of that jump, predicting the target of
such an instruction is really difficult. From
microarchitectural point of view object-oriented
programming techniques exercise different aspects of
computer architecture to support the object-oriented
programming style (Calder and Grunwald 1994, Florea
et al. 2004). In the last decade the importance of indirect
branch prediction increased even though, in the
computing programs the indirect jumps and calls remain
less frequent than the more predictable conditional
branches. One of the reasons refers to predicative
execution that implies decreasing of conditional
branches number. The dimension took by the desktop,
visual or object-oriented applications development
(C++, Java – characterized by a large amount of indirect
branches comparative to procedural programs), and
respectively, the portability trend of many of them, as
well as the usage of Dynamically-Linked Libraries,
represent other reasons which illustrate that indirect
branch prediction misses start to dominate the overall
misprediction cost. Knowing that the Pentium4
equivalent processor performance degrades by 0.45%
per additional branch missprediction cycle and,
additional, a very small number of static indirect

branches is responsible for more than 90% of dynamic
indirect jumps (Calder and Grunwald 1994, Florea et al.
2004), results that the overall performance of
architectures are very sensitive to indirect branch
prediction. Since the prediction accuracy generated by
classical schemes Branch Target Buffer or Last Value
Predictor is less than 75% (Chang et al 1997) and, the
maximum value obtained by a feasible PPM (Partial
Prefix Matching) predictor, reported in literature is
around 90%, implies the necessity of implementing new
performing indirect branch prediction schemes (hybrid
or cascaded predictors, or even adapted from value
prediction – contextual, PPM predictors).

One goal of this paper is to show that a modified
Target Cache structure based on confidence mechanism
and indexed with extended global correlation
information represents a more simpler and feasible
solution that could replace the more complex PPM
predictor. We developed a path based predictor derived
from the native Target Cache (Chang et al. 1997),
attaching a confidence counter (degree of reliability) at
every Target Cache location, together with a
replacement mechanism based on LRU (least recently
used), confidence and both of them. The confidence
mechanism performs speculation control by limiting the
prediction to those that are likely to be correct. We also
extend the global correlation information to identify the
right context of indirect jump occurrences. The
prediction accuracy generated by the new scheme
proposed is only with 0.4% under the accuracy provided
by a PPM predictor, but our scheme is much simpler
and more feasible to be implemented in hardware.

However, the best result reported in this work consists
in developing of a hybrid predictor with arity-based
selection. Our new scheme improves indirect branch
prediction accuracy reaching in average to 93.77%,
comparable with a more complex multi-stage cascaded
(Driesen and Hoelzle 1999). We classified branches
according to a dynamic measure, the number of
different targets encountered in a program run, or
branch arity. The arity of a branch we determined in a
profiling run. The profile information table helps to
select which component predictor will predict at every
moment. The component predictors are: a LastValue
predictor (Lipasti et al. 1996, Florea et al. 2002) for
monomorphic (1 target) or duomorphic (2 targets)
indirect jumps, and respectively, the best contextual
(markovian) predictor (Sazeides 1999, Florea et al.
2004) for polymorphic branches (more than 2 targets).
Therefore, we determine first, based on laborious
simulations what is the optimum search pattern when
different contexts are used. Thus, we obtained that the
markovian predictor has the best behavior in two
different contexts: using a short history (the last 32
targets and a search pattern of 3) and a rich history (last
256 targets and a search pattern of 6).

The organization of the rest of this paper is as follows.
In section II we review related work in the field of
indirect branch prediction. Section III describes the
implemented predictors. Section IV includes simulation

methodology and experimental results obtained using
the simulator that we developed. Finally, section V
suggests directions for future works and concludes the
paper.

II. RELATED WORK

Several forms of BTBs, applied to indirect branch
prediction, have been studied by Lee (Lee and Smith
1984). The simplest BTB keeps the most recent target
for each branch. In the case of a BTB target mispredict,
the predicted target address is replaced. An
improvement upon that basic BTB configuration was
proposed by Calder (Calder and Grunwald 1994), where
a two-bit counter is used to limit the update of the target
address only after two consecutive mispredictions have
occurred (BTB2b strategy). The BTB2b can produce a
better branch prediction ratio for C++ applications by
taking advantage of the locality exhibited by targets of
virtual function calls (C++ polymorphic calls). Similar
results we obtained in a previous work (Florea et al.
2004). We showed that target localities for some object
oriented test programs and SPEC benchmarks (’95 and
2000) is over 90%, considering different context orders,
varying from 1 to 32.

In (Kaeli and Emma 1991) and (Kaeli and Emma
1997) the authors described two mechanisms that
accurately predict the targets of two special classes of
indirect branches: (i) subroutine returns, and (ii) indirect
jumps generated by switch statements. A Call/Return
Stack (RAS) was described which uses the inherent
correlation between procedure calls and returns to pair
up the correct target address with the current return
invocation.

In (Driesen and Holzle 1998a) it is examined a
modified structure of the two-level adaptive branch
predictor to predict the targets of indirect branches.
Their design allows path-based correlation to be
exploited by recording partial previous targets in the
history register (instead of branch directions since the
indirect jumps have always the same direction). Driesen
performed an exhaustive search on a large number of
two-level predictor configurations. The best prediction
accuracy was generated using the GAp structure (Global
History Register, Per-address Pattern History Table
(PHT) configuration). However, the application of their
results is limited since they recorded full target
addresses in the history register and assumed infinite
PHTs. Also, the authors explore realistic designs,
varying how and when targets are recorded in the
history register, the size and associativity of the PHTs,
and the size of the history register. They also proposed
using dual-path hybrid predictors with confidence
counters to improve prediction accuracy under a fixed
hardware budget. Each component was a two-level
predictor with a different path length. Their findings
suggest that the best dual path predictor had components
with the short and a long path length. Some of our
results exhibit the same conclusion. If the context would
permit it could be seen a correlation between branches

situated at a large distance in the dynamic instruction
stream. Whether in the current path-based predictors,
the N most recent target addresses are hashed together
to form an index into a table, where N is some fixed
integer, Stark proposed (Stark et al. 1998), using
profiling information, to select the proper value of N for
each branch, thus, achieving an extremely accurate
branch prediction.

In (Chang et al 1997) was proposed a structure similar
to the two-level adaptive scheme, named Target Cache
(TC). Its history register recorded partial targets from a
selected group of branches (the group may include all
branches, indirect branches, conditional branches or
calls/returns). Their path-based simulation results
showed the dependence of indirect branch predictability
on the type of correlation.

In (Driesen and Holzle 1998b) was performed another
study about the predictability of indirect branches using
filtering. The proposed filtering scheme improve the
prediction ratio by isolating monomorphic and low
entropy branches from a main body predictor and
reducing the collision factor in the later. Their cascaded
predictor included a GAp/Dual-path hybrid predictor as
their major component and strict/leaky filter,
implemented as a BTB–like structure. In (Driesen and
Holzle 1999) the two-stage prediction was generalized
to multistage prediction. At 1.5K entries a three-stage
predictor reaches 94% accuracy, the hit rate of a
hypothetical two-level predictor with an unlimited, fully
associative prediction table. At 6K entries, accuracy
increases to 95%, the limit achieved by an idealized
twelve-stage cascaded predictor with an unlimited
hardware budget.

In (Kalamatianos and Kaeli 1998) the authors applied
the PPM algorithm to the task of indirect branch
prediction. The PPM predictor shortens a history pattern
bit by bit, and looks it up successively smaller stages.
Each stage is half the size of its predecessor. The bits
correspond to branch targets, so this scheme tests ever
shorter path lengths. Kalamatianos combines a viable
implementation of the PPM algorithm with dynamic
per-branch selection of the path-based correlation. The
maximum prediction accuracy reported is 90.53%.

III. INDIRECT JUMPS TARGET PREDICTION

Extending Target Cache structure with a confidence
mechanism

The first considered predictor was a tagged Target
Cache predictor inspired from that presented in (Chang
et al. 1997). The Target Cache improves the prediction
accuracy for indirect branches by choosing its
prediction from the last N targets of the indirect branch
that have already been encountered. When an indirect
jump is fetched, both the PC and the globalHR (a
history register that retains the behavior of last
HRgLength conditional branches) are used to access the
TC for predicting the target address. As the program
executes, the TC records the target for each indirect

jump target encountered. Our proposed scheme, for set
selection, uses the least significant bits of the word
obtained by hashing (XOR) the indirect jump’s address
(PC) and the globalHR. The most significant bits of the
obtained output form the Tag. In the case of a hit in TC
the predicted target consists in the corresponding
address belonging to that TC set (field Adr from figure
1). In case of a misprediction, (the Tags coincide but the
target addresses differ) after the indirect branch is
resolved, the Target Cache entry is updated with its real
target address. It is implemented a LRU replacement
algorithm. We have implemented and simulated a P-
way set associative TC, where P=1, 2, 4, 8 like that
presented in figure 1. In the case of a miss in TC the
prediction is considered wrong, it doesn’t propose any
value and it is added a new entry in the respective set
updating with the proper tag and the proper target,
accordingly with the specified replacement algorithm.

A common criticism for all the present two-level
adaptive branch prediction schemes (applied either to
conditional branches or indirect jumps) consists in the
fact that they used insufficient global correlation
information (Vintan and Egan 1999). There are
situations when for the same static indirect branch and
in the same globalHR (see figure 1) context pattern it’s
possible to find different targets. If each bit belonging to
globalHR will be associated during the prediction
process with its corresponding PC the current indirect
branch’s context becomes more precisely and therefore
its prediction accuracy could be better. Next, we
developed a path based predictor, through extending the
correlation information according to the above idea
(Vintan and Egan 1999). Thus, the first level of history
of Target Cache predictor records the path (the
conditional branches’ addresses) leading to the current
indirect jump. Extending the correlation information in
this way suggests that at different occurrence contexts
of a certain indirect jump it will access different sets
from TC structure, reducing a significant amount of
interferences and increasing the prediction accuracy.
Compression of this complex information is possible
and even necessary, taking into account the request of
reasonable costs for these schemes. The hash function
used is a simple XOR.

The next contribution follows up to improve indirect
branch prediction accuracy by selectively ignoring some
predictions. Therefore, we attached a confidence
counter (degree of reliability) at every Target Cache
location, together with a replacement mechanism based
on LRU, confidence and on the both metrics
superposition called by us MPP (performance potential
minimum) – see figure 1. A confidence mechanism
performs speculation control by limiting the predictions
to those that are likely to be correct. A high confidence
degree represents the continuous correct predictability
in a given history of an indirect jump while the LRU
field means its activity degree (how many times this
branch was accessed). Both Confidence field and LRU
field were implemented as saturating counter being
represented on different number of bits. For exploiting

this subsection results we used some new metrics,
proposed in (Deswet et al. 2002):

We call only here prediction accuracy (Ap) the
probability that prediction generated by a high confident
state to be correct. Usage represents the prediction
performed degree, practically the number of cases when
the automaton was in a high confident state (confidence
is greater than a certain threshold and TC is ensured to
make a prediction), reported to the total number of
indirect jumps.

ntcorrHCcorrHC

corrHC
)confidenceHighpredictioncorrect(ProbpA

+
== (1)

rect_jumpsTotal_indi
ntcorrHCcorrHC

degree)performedn(predictio
+

=Usage (2)

We define the predictors’ overall performance metric,
the product: P = Ap·Usage (3)

From (1), (2) and (3) results that:

rect_jumpsTotal_indi
corrHC=P . (3’)

We determined how are influenced this metrics by a
parameterized threshold.

Figure 1. Extending Target Cache Structure with a Confidence Mechanism

Arity-based selection hybrid predictor

In a previous research (Florea et. al 2004), in order to
have an ultimate context predictability metric of indirect
branches we measured their target address value
locality. The value locality concept was first introduced
by Lipasti (Lipasti et al. 1996) and it represents the
likelihood of the recurrence of a previously seen value
within a storage location. Accordingly, in our case,
we’ll say that an indirect jump (call) target value is local
if it belongs to the previous K dynamic target instances
of that certain jump (call). Obviously, a great target
locality degree involves great prediction accuracy, too.
In other words, the value locality degree obtained for K
dynamic target instances represents the maximum
achievable prediction accuracy using a context predictor
of order K. Therefore, our approach establishes an
analogy between value prediction and, respectively,
indirect jumps target prediction. Statistical results based
on simulations have proved that indirect jumps targets
are characterized by higher degree of value locality
(over 90% for K≥4). The main causes for this
phenomenon are: the compiler routines that resolve
virtual function calls, inheritance and polymorphism
from object-oriented programs, indirect calls through
function pointers, switch/case statements, etc.

In the same research we find that a complete PPM
predictor having an associative indirect jump value
prediction table (JVPT) with 256 entries generates
average prediction accuracy between 89.33% and
91.58% depending on the context used in simulation:

short history (the last 32 targets) and a rich history (the
last 256 targets), the search pattern varying descending
from of 4 to 1. Taking into account PPM’s complexity
we tried to implement a simplified PPM or a
confidence-base hybrid predictor having as components
two contextual predictor of different order. Knowing
that only a small amount of the path information leading
up to a branch is needed for prediction (Stark et al.
1998) we tried to find what the optimum search pattern
is when different contexts are used. Thus, we obtained
that the markovian predictor has the best behavior in
two different contexts: using a short history (the last 32
targets and a search pattern of 3) and a rich history (last
256 targets and a search pattern of 6).

The values obtained (orders of Markov predictors) we
used in developing of a hybrid predictor with arity-
based selection. We classified branches according to a
dynamic measure, the number of different targets
encountered in a program run, or branch arity. The arity
of a branch we determined in a profiling run. The
profile information table, completely associative and
retaining the arity of every indirect jump, helps to select
which component predictor will predict at every
moment. The component predictors are: a LastValue
predictor for monomorphic or duomorphic indirect
jumps, and respectively, the best contextual predictor,
previously determined, for polymorphic branches. Both
LastValue and contextual predictor are completely
associative and are indexed in the instruction fetch stage
with indirect branch address (PC).

Figure 2. Arity-based Selection Hybrid Predictor

IV. SIMULATION METHODOLOGY AND
EXPERIMENTAL RESULTS

We developed a cycle-accurate execution driven
simulator derived from the sim-outorder simulator in
the SimpleScalar tool set (Burger and Austin 1997). The
baseline superscalar processor supports out-of-order
instruction issue and execution. We modified it to
incorporate the indirect jumps’ predictors proposed in
section 3 in order to measure target locality, and,
respectively to predict targets for indirect jumps and
calls.

To perform our evaluation, we collected results from
different versions of SPEC benchmarks: 3 integer (li,
go, cc1) and 4 floating point (applu, apsi, fpppp, hydro)
SPEC’95 benchmarks. From the CINT SPEC2000 set, it
was simulated 8 benchmarks (gzip, b2zip, parser, crafty,
gap, gcc, twolf and mcf). We simulated some SPEC’95
benchmarks too in order to compare their behavior with
that one involved by more recently SPEC2000. In other
words, we intend to discover how these different
benchmarks influence the indirect jumps predictors’
micro-architectural features.

The number of instructions fast forwarded through
before starting our simulations is 500 million. We used
the –fastfwd option in SimpleScalar / PISA 3.0 to
skip over the initial part of execution in order to
concentrate on the main body of the programs. Results
are then reported for simulating each program for 200
million committed instructions.

For improving indirect branch prediction accuracy the
first tentative was to modify the native Target Cache
predictor (Chang et al. 1997). In a previous work
(Florea et al. 2004) it was studied the potential of native
TC and determined the influence of conditional
branches global history about prediction. Thus, without
taking into account of conditional branches global
history , the prediction accuracy produced by a native

TC having 64 4-way associative sets is slightly less than
80%. Repeating the simulation process for a 256 set TC
we obtained that the prediction accuracy is practically
saturated. Anyway, the obtained results are smaller than
those obtained using a complete PPM predictor (see
section III). For benchmarks with a high number of
targets generated by an indirect branch (cc1, li), through
indexing the Target Cache with conditional branches
global history the indirect branch prediction accuracy
increases (in average until 16.93% and also, in cc1
particular case even 45%). Simulation results on 7
SPEC’95 benchmarks show that the optimum accuracy
it is obtained by keeping the behavior (T/NT) of last 8
conditional branches encountered (globalHR – global
history register on HRgLength bits), a pattern longer
that this behaving as noise. Even if, in other researches
is used a “long” history (Thomas et al. 2003) or
“elastic” (variable length depending on every branch)
(Stark et al. 1998, Tarlescu et al. 1997), since the
simulation results on the native Target Cache structure
(Florea et al. 2004) were optimum for a history length
of 4 (in average on 7 SPEC’95 benchmarks) or 8 (in
average on the 4 benchmarks rich in dynamic indirect
jumps – apsi, cc1, li, hydro2d) we decided to continue
the simulations using a fix value for HRgLength (4 or
8). Figure 3 and table 1 are presenting the quantitative
benefits of extending context information that indexes
TC structure.

For benchmarks with the largest number of indirect
jumps, by extending the correlation (PC1, PC2, …,
PCHRgLength) and at the same level of complexity (Target
Cache structure of the same size), the prediction
accuracy increases (with 8.64% for HRgLength of 4
and respectively, with 15.16% for HRgLength of 8 – see
table 1). Table 1 illustrates the prediction accuracy in
average on apsi, cc1, li, hydro2d testing programs.

Ap = f(Extend)
TC - 4 way associative, 64 sets, HRgLength=4, XOR

hashing

81.82

81.11
85.0994.60

0
20
40
60
80

100

app
lu aps

i
cc1

li

fpp
pp go

hy
dro

Aver
age

SPEC benchmarks
P

re
d

ic
ti

on
A

cc
u

ra
cy

 [
%

]

Extend = 0

Extend = 1

Figure 3. The Influence of Extended Correlation Information about Indirect Branches Prediction Accuracy

Table 1. Increasing the Indirect Jumps Prediction Accuracy by using a more precise Context on Benchmarks with the largest Number
of Indirect Jumps, using a TC – 4 way associative; 64 sets

HRgLength = 4 HrgLength = 8
Extend = 0 76.52% 74.56%
Extend = 1 83.13% 85.86% (respectively 88.21% for a TC – 8

way associative)

Although the improvement obtained by extending the
correlation information is obvious, in average, the
indirect branches prediction accuracy is still lower than
that generated by a complete PPM predictor (89.33%).
However, particularly there are also very good results:
prediction accuracy obtained on hydro2d – 99.98%

(HRgLength = 8; TC – 4 way associative; 64 sets, and
using rich context PC1, PC2, …, PCHRgLength), is equal
with that exhibits by the complete PPM predictor.

Unpleased by previously results we tried to imp rove
indirect branch prediction accuracy by selectively
ignoring some predictions.

Ap = f(Threshold)
TargetCache - 4 way associative; 64 de seturi -

HRgLength 4 -XOR 1 -Extend 0 -bLRU 2 -bConf 3

94.27
100.00

99.21
96.23

89.21

85.49

83.38
0

20
40
60
80

100

ap
plu

fpp
pp go aps

i cc1
li

hy
dro

Aver
age

SPEC'95 benchmarks

P
re

d
ic

ti
on

ac
cu

ra
cy

 [
%

] Threshold = 6

Threshold = 4

Threshold = 2

Threshold = 0

Figure 4. Prediction Accuracy (Ap) varying the Threshold, using a Confidence Mechanism

TargetCache - 4 way associative; 64 de seturi -
HRgLength 4 -XOR 1 -Extend 0 -bLRU 2 -bConf

3

41.91% 61.31%

68.50%
77.50%

86.95%

0%
20%
40%
60%
80%

100%

app
lu

fpp
pp go aps

i
cc1

li

hy
dro

M
edi

e a
ritm

e...

SPEC'95 Benchmarks

U
sa

ge
 [

%
]

Threshold = 6

Threshold = 4

Threshold = 2

Threshold = 0

Figure 5. The Prediction performed Degree (the Indirect Jump Fraction having Confidence>Threshold)

Practically, the probability that prediction generated by
a high confidence states (Ap) to be correct significantly

increases through reducing the cases when the structure
makes a prediction (between 3.57% and 11.45%

depending the threshold). The disadvantage is that the
percentage of cases in which is made a prediction
dramatically decreases. The efficiency of extending
correlation information is proved in this case once again
(predictors’ overall performance increases with 5.62%
when is used a rich context to identify the current

indirect branch, approaching by the PPM predictors
performance). After laborious simulations the
conclusion is that attaching a confidence counter the
prediction accuracy is improved when this is less
selective (see tables 2 and 3).

Table 2. The Influence of Associativity Degree on TC Predictor (with and without Confidence)
(TC - 64 sets -HRgLength 4 -XOR 1 -Extend 1 -bLRU 2 -bConf 3) - I

Associativity
Degree (AD)

Predictors’ overall performance (with confidence
mechanism) - P

Prediction Accuracy
(without confidence

mechanism) Threshold = 1 Threshold = 2
AD = 2 78.15% < 79.39% > 77.91%
AD = 4 82.27% < 82.78% > 81.32%
AD = 8 82.35% < 85.13% > 83.87%

Table 3. The Influence of Associativity Degree on TC Predictor (with and without Confidence)
(TC - 128 de seturi -HRgLength 8 -XOR 1 -Extend 1 -bLRU 2 -bConf 3) - II

Associativity
Degree (AD)

Predictors’ overall performance (with confidence mechanism) -
P

Prediction Accuracy
(without confidence

mechanism) Threshold=0 Threshold=1 Threshold=2
AD = 4 86.40% < 87.39% 85.66% 84.98%
AD = 8 86.47% < 88.88% > 87.17% > 86.51%

Increasing the associativity degree greater than 8-way,
the predictors’ overall performance became
asymptotical. Thus, for a 8-way associative Target
Cache predictor having 128 sets, keeping the behavior
of last 8 conditional branches P=88.97% , only with 0.4
% under the accuracy provided by a PPM predictor
(89.33%).

Since for a Target Cache 4-way associative the
percentage of cases in which there are made
replacements according to LRU principle is less than
1% (except apsi and hydro benchmarks) it results that,
increasing the associative degree and implicit
decreasing the percentage of conflict misses the
influence of LRU field tend to become insignificant.
Thus it might be implemented a trivial replacement
algorithm (e.g. FIFO) having benefits about reducing

Target Cache structure complexity. Also, the
replacement mechanism from Target Cache based upon
LRU principle has proved more efficient than that based
upon confidence field minimum value (with 2.43%) and
even with 0.34% better than the MPP algorithm. This
leads to the idea that some indirect branches are
replaced before attaining a minimum confidence and
later they would prove correct predicted. Furthermore,
although it was expected that MPP replacement
algorithm to generate the highest prediction accuracy it
seems that the minimum values of this metric (MPP) –
possible 0 are influenced by the lower confidences (0 –
for many times).

The next two figures exhibit what is the optimum
search pattern when different contexts are used.

Prediction accuracy varying the Markov predictor order
(k)

-jvpt 256 entries; -history 32 targets
Average(k=3)=89.10%

50%

60%

70%

80%

90%

100%

1 2 3 4 6 8 10 12
search pattern = k

P
re

d
ic

ti
on

ac
cu

ra
cy

 [
%

] apsi

cc1

hydro

li

Average

Figure 6. Obtaining the proper Order of Markov Predictor (poor Context – 32 targets)

Prediction accuracy varying Markov predictor order (k)
-jvpt 256 entries; -history 256 targets

Average(k=6)=
91,54%

70%

80%

90%

100%

1 2 3 4 6 8 10 12
Search pattern = k

P
re

d
ic

ti
on

 a
cc

u
ra

cy

[%
]

apsi

cc1

hydro

li

Average

Figure 7. Obtaining the proper Order of Markov Predictor (rich Context – 256 targets)

More or less obviously the obtained results suggest that
a longer history retained implies a higher prediction
accuracy by increasing the search pattern (if the context
would permit it could be seen a correlation between
branches situated at a large distance in the dynamic
instruction stream). The simulation results using a
contextual (Markov) predictor showed that for a history
of 32 targets the maximum prediction accuracy 89.10%
it was obtained for a pattern of 3, while the history
became longer the maximum value 91.54% was
obtained with a pattern of 6 (Figure 7). This could

suggest implementing a hybrid or cascaded indirect
branch predictor with component having different path
length. The results emphasize the researchers trends
(Thomas et al. 2003) to keep in prediction process a
very long history. The authors argue that for a branch
under prediction, some of the correlated branches may
have appeared at a large distance in the dynamic
instruction stream. This can happen if two correlated
branches are separated by a call to a function containing
many branches.

The percent of indirect jumps that exhibit each type of arity

41.13%

96.86%

7.34%
0.24% 9.88%

100.00%
91.25%

48.99%52.32%

0%

20%

40%

60%

80%

100%

app
lu

fpp
pp go aps

i cc1 li
hyd

ro

Aver
age

SPEC'95 benchmarks

[%
]

1 target %

2 targets %

>2 targets %

Figure 8. The Indirect Branches Arity –dynamically Point of View

Arity-based classification which classifies
indirect branches according to the number of different
targets permit us to implement a hybrid predictor having
components a Last Value predictor (without history) for
a monomorphic branches and the best previous
determined contextual predictor for polymorphic jumps.
Simulation results on SPEC’95 benchmarks with a large
number of indirect branches exhibit 41.13%
monomorphic branches, 9.88% duomorphics and
48.99% polymorphics. Our developed hybrid predictor
with arity-based selection improves indirect branch

prediction accuracy with percentages between 2.44%
and 5.42% reaching in average 93.77%, comparable
with that reported in literature (Driesen and Hoelzle
1999). Simulation results on SPEC2000 suite show that
three of the eight simulated benchmarks (gcc, crafty,
twolf) generate polymorphic indirect branches in
proportion of 96%. In our opinion, the significant
percentage of polymorphic indirect branches and higher
targets entropy specific for some indirect jumps (see the
ccl, li benchmarks) fundamentally limits the indirect
jumps prediction accuracy.

Improving prediction accuracy using profile information about
indirect jumps arity

88.95%

89.10%

91.80%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

apsi cc1 hydro li Average

SPEC'95 benchmarks

P
re

di
ct

io
n

ac
cu

ra
cy

[%

]

The best TargetCache -
with confidence

contextual
pattern=3;history=32

hybrid LastValue +
contextual 32

Figure 9. Indirect Branch Prediction Accuracy using a Hybrid Predictor with Arity-based Selection (poor Context)

Improving prediction accuracy using profile information about
indirect jumps arity

88.95%
91.54%

93.77%

0%

20%

40%

60%

80%

100%

apsi cc1 hydro li Average

SPEC'95 benchmarks

P
re

di
ct

io
n

ac
cu

ra
cy

[%

]

The best TargetCache -
with confidence

contextual
pattern=6;history=256

hybrid LastValue +
contextual 256

Figure 10. Indirect Branch Prediction Accuracy using a Hybrid Predictor with Arity-based Selection (rich Context)

V. CONCLUSIONS AND FURTHER WORK

Due to higher degree of target localities associated with
indirect jumps, we predicted these indirect jumps and
calls using some contextual value predictors, derived
from the complete PPM predictor respectively the
Target Cache predictor. The obtained results were better
than those reported by other researchers that used more
simplified context predictors. PPM predictor seems to
be an almost ultimate limit of context target prediction,
and, thus, a good frame for further deriving new
practical prediction schemes.

In this sense, we tried to extend the context prediction
information adding new correlations. This information,
available during the instruction fetch stage in the
pipeline, consists of global history register together with
its corresponding PCs (one PC for each previous
encountered branch (Vintan and Egan 1999)). Using this
new correlation information together with the global
history register, the current indirect jump's context
becomes more precisely and therefore its prediction
accuracy is showed to be better. Our first simulation
results are encouraging; we showed that a scheme based
on this principle performs better than a classical Target
Cache scheme (Chang et al. 1997), at the same
hardware complexity level. Also, we extend and
improve the native Target Cache structure (Chang et al.
1997) with a confidence mechanis m for improving the
indirect jumps’ prediction accuracy. The prediction
accuracy generated by the new scheme proposed is only
with 0.4 % under the accuracy provided by a PPM
predictor, but our scheme is much simpler and feasible

to be implemented in hardware. The best prediction
accuracy was obtained using a hybrid predictor with
arity-based selection that improves indirect branch
prediction accuracy reaching in average to 93.77%,
comparable with a more complex multi-stage cascaded
predictor.

The excellent results obtained impose introducing and
exploiting the hybrid and cascaded predictor in other
computer architecture issues to increase the instruction
and thread level parallelism: conditional branch
prediction, instruction and register value prediction. As
a further work we will try to replace the arity-based
selection hybrid predictor with a simple neural network
which will select dynamically between ordinary
component predictors (Last Value, Target Cache,
contextual, hybrid). Also we will study the feasibility of
an indirect branch predictor correlated and decision
trees based. Another solution could appear from
development of some “semantic predictors”, based on
High Level Language applications’ information that we
prove being important related to indirect jumps
generation (polymorphism, indirect function calls, etc.;
see our investigations presented in (Florea et al. 2004)).
This might be a completely new approach in branch
prediction domain, where HLL semantics are often
hidden. As far as the architecture designers are
concerned, their proposed schemes could be more
efficient if not only the object code from benchmarks
(“wear off by any semantic information”) is analyzed
but they will also look “higher” towards high level
sources of simulated programs.

REFERENCES

Burger D. and T. Austin. 1997. “The SimpleScalar Tool Set,
Version 2.0”, University of Wisconsin Madison, USA,
Computer Science Department, Technical Report #1342,
June, 1997.

Calder B. and D. Grunwald. 1994.”Reducing Indirect
Function Call Overhead in C++ Programs”, In 1994 ACM
Symposium on Principles of Programming Languages ,
pages 397-408, January 1994.

Chang P.Y., E. Hao, Y.N. Patt. 1997. “Target Prediction for
Indirect Jumps”, Proceedings of the Int’l Symposium on
Computer Architecture, 1997.

Deswet V., B. Goeman, K. Bosschere. 2002. “Independent
hashing as confidence mechanism for value predictors in
microprocessors”, Int’l Conf. EuroPar, Augsburg,
Germany, 2002.

Driesen K. and U. Holzle. 1998a. “Accurate Indirect Branch
Prediction”. In Proceedings of the International
Symposium on Computer Architecture, pages 167-178,
Barcelona, Spain, June 1998.

Driesen K. and U. Holzle. 1998b. “Improving Indirect Branch
Prediction With Source- and Aritybased Classification and
Cascaded Prediction”. Technical Report TRCS98-07,
Computer Science Department, University of California,
Santa Barbara, 1998.

Driesen K. and U. Holzle. 1999. “Multi-stage Cascaded
Prediction”. Euro-Par’99 Conference Proceedings,
Toulouse, France, September 1999.

Egan, C., G. Steven, P. Quick, R. Anguera, F. Steven, and L.
Vintan. 2003. “Two-level branch prediction using neural
networks”, Journal of Systems Architecture 49(12),
Elsevier, December, 2003.

Florea A., L. Vintan, D. Sima. 2002. “Understanding Value
Prediction through Complex Simulations”. Proceedings of
the 5th International Conference on Technical Informatics,
University “Politehnica” of Timisoara, Romania, October,
2002.

Florea A., L. Vintan, I.Z. Mihu. 2004. “Understanding and
Predicting Indirect Branch Behavior”. Studies in
Informatics and Control Journal: With Emphasis on
Useful Applications of Advanced Technology, March
2004, Vol.13, No. 1, Bucharest.

Kaeli D. and P. Emma. 1991. “Branch History Table
Prediction of moving Target Branches due to Subroutines
Returns”, Proceedings of the Int’l Symposium on
Computer Architecture, May 1991.

Kaeli D. and P. Emma. 1997. “Improving the Accuracy of
History-Based Branch Prediction”. IEEE Transactions on
Computer Architecture, 46(4):469-472, April 1997.

Kalamatianos J. and D. Kaeli. 1998. “Predicting Indirect
Branches via Data Compression”. In Proceedings of 31st

International Symposium on Microarchitecture, pages
272-281, Dec. 1998.

Lee J. and A. Smith. 1984. “Branch Prediction Strategies and
Branch Target Buffer Design”, Computer 17:1, January
1984.

Lipasti M., C. Wilkerson, P. Shen. 1996. “Value Locality and
Load Value Prediction”. In 17th ASPLOS International
Conference VII, SUA, 1996.

Mudge T., I.K. Chen, J.T. Coffey. 1996.”Analysis of Branch
Prediction via Data Compression”. Proceedings of the 7th
International Conference on ASPLOS VII, Cambridge,
MA, USA, October 1996.

Sazeides Y. 1999. “An analysis of value predictability and its
application to a superscalar processor”. PhD Thesis ,
University of Wisconsin-Madison, 1999.

Seznec A. 2004. “Revisiting the Perceptron Predictor”. IRISA
research reports, IRISA Editeur, May, 2004.

Steven G.B., C. Egan, P. Quick, and L. Vintan. 1999.
“Reducing Cold Start Misspredictions in Two-Level
Adaptive Branch Predictors”, Proceedings of the Int’l
CSCS-12 Conference, Bucharest, May 1999.

Tarlescu M., K. Theobald, and G. Gao. 1997. “Elastic history
buffer: A low cost method to improve branch prediction
accuracy”. In Proceedings of the IEEE International
Conference on Computer Design, 1997.

Thomas R., M. Franklin, C. Wilkerson, J. Stark. 2003.
“Improving Branch Prediction by Dynamic Dataflow-
based Identification of Correlated Branches from a Large
Global History”. The 30th Annual International
Symposium on Computer Architecture, San Diego,
California, 2003.

Vintan L. and C. Egan. 1999. “Extending Correlation in
Branch Prediction Schemes”. International Euromicro’99
Conference, Italy, September 1999.

AUTHOR BIOGRAPHIES

ADRIAN FLOREA
obtained an MSE
(Computer Science) in
1997 and is a PhD student
in (Computer Science)
since 2000 from the
University “Politehnica”
of Bucharest, Romania.
He is a lecturer of
Computer Science and

Engineering at the University ‘‘Lucian Blaga ’’of Sibiu,
Sibiu, Romania. Adrian is an active researcher in the
fields of High Performance Processor Design and
Dynamic Branch Prediction. His Web-page could be
found at http://webspace.ulbsibiu.ro/adrian.florea

LUCIAN VINTAN obtained
an MSE (Computer
Engineering) in 1987 and a
PhD (Computer Science) in
1997, both from the
University “Politehnica” of
Timisoara, Romania. He is a
Professor of Computer
Science and Engineering at
the University “Lucian Blaga”

of Sibiu, Romania. Professor Vintan is an active
researcher in the fields of High Performance Processor
Design and Dynamic Branch Prediction and has
collaborated with the Computer Architecture Research
Group at the University of Hertfordshire since 1996. His
Web-page could be found at
http://webspace.ulbsibiu.ro/lucian.vintan

	c0: Proceedings 19th European Conference on Modelling and SimulationYuri Merkuryev, Richard Zobel, Eugène Kerckhoffs © ECMS, 2005ISBN 1-84233-112-4 (Set) / ISBN 1-84233-113-2 (CD)

