

ABSTRACT

AL-ZAWAWI, AHMED SAMI. Transparent Control Independence (TCI). (Under the
direction of Dr. Eric Rotenberg).

Superscalar architectures have been proposed that exploit control independence,

reducing the performance penalty of branch mispredictions by preserving the work of future

misprediction-independent instructions. The essential goal of exploiting control

independence is to completely decouple future misprediction-independent instructions from

deferred misprediction-dependent instructions. Current implementations fall short of this goal

because they explicitly maintain program order among misprediction-independent and

misprediction-dependent instructions. Explicit approaches sacrifice design efficiency and

ultimately performance.

We observe it is sufficient to emulate program order. Potential misprediction-dependent

instructions are singled out a priori and their unchanging source values are checkpointed.

These instructions and values are set aside as a “recovery program”. Checkpointed source

values break the data dependencies with co-mingled misprediction-independent instructions

– now long since gone from the pipeline – achieving the essential decoupling objective.

When the mispredicted branch resolves, recovery is achieved by fetching the self-sufficient,

condensed recovery program. Recovery is effectively transparent to the pipeline, in that

speculative state is not rolled back and recovery appears as a jump to code. A coarse-grain

retirement substrate permits the relaxed order between the decoupled programs. Transparent

control independence (TCI) yields a highly streamlined pipeline that quickly recycles

resources based on conventional speculation, enabling a large window with small cycle-

critical resources, and prevents many mispredictions from disrupting this large window.

TCI achieves speedups as high as 64% (16% average) and 88% (22% average) for 4-

issue and 8-issue pipelines, respectively, among 15 SPEC integer benchmarks. Factors that

limit the performance of explicitly ordered approaches are quantified.

TRANSPARENT CONTROL INDEPENDENCE (TCI)

by

AHMED SAMI AL-ZAWAWI

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

COMPUTER ENGINEERING

Raleigh, North Carolina

2007

APPROVED BY:

Dr. Eric Rotenberg, Chair of Advisory Committee

________________________________ ________________________________
Dr. Thomas M. Conte Dr. Suleyman Sair

Dr. Warren J. Jasper

ii

DEDICATION

To my son, Hamza

To whom I wish a very bright future…

iii

BIOGRAPHY

Ahmed S. Al-Zawawi was born in 1979 in Riyadh, Saudi Arabia. In 1998, he received a

full scholarship to continue his higher education in the United States of America. By the end

of 2001, Ahmed graduated summa cum laude with a Bachelor of Science degree in Computer

Engineering and a minor in Mathematics from North Carolina State University. Ahmed

pursued his graduate studies in Computer Engineering at NCSU under the guidance of Dr.

Eric Rotenberg. He received the Masters degree in 2002 and the Doctor of Philosophy degree

in 2007. During his graduate career, Ahmed joined Intel’s prestigious microarchitecture

research lab (MRL) to complete his research internship. His research interests include

computer architecture, high-performance microarchitecture, and compiler optimization.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank Allah (God), the Most Gracious, the Most

Merciful for his help and guidance in completing this work.

Next, I must thank my family, especially my parents and my wife. My parents, Zain and

Sami, always gave me all the support and encouragement for education that underlies any

success I have experienced. Without their unconditional love and confidence in me, I would

not be at this stage today. Their strong belief in my abilities was always pushing me forward

throughout my life and my graduate career in particular. Whatever I say, I will not be able to

thank them enough.

My wife, Najwa, has always been my main source of support. In addition to her being

primarily responsible for raising our son, it would have been difficult for me to achieve any

success without her understanding, assistance and patience. She has graciously accepted the

fact that for three years we would not be able to take a visit to our home country. My debt of

gratitude to her cannot be fully paid.

I would like to express my heartfelt gratitude to my advisor Dr. Eric Rotenberg for

accepting me as his student. I really respect and appreciate Eric for all the knowledge I

learned from him. I would like to thank him for patiently answering all my questions and for

his invaluable advice and comments that inspired me in defining my research. Eric was not

only my advisor; he was also a big brother for me and a role-model for a respectful professor.

He taught me how the relationship between a student and a professor should be and how

concerned and devoted a professor must be. I am really indebted to him for all his help and

v

teaching. And I am also grateful to my defense committee members (Dr. Thomas M. Conte,

Dr. Suleyman Sair, and Dr. Warren J. Jasper) for their help in improving this thesis.

My sincere thanks also go to so many friends and colleagues in the CESR group. I want

to thank Vimal, Ali, Aravindh, Ravi, Muawya, Hashem, Saurabh, Chad, Paul, and Balaji for

being good friends and for providing me with valuable feedback whenever I needed it. My

time with you guys in the office and our conversations together will never be forgotten.

I am very thankful to my friends who made the past five years possible. I must thank my

best friends Hatem, Abdul-Satir, Hani, Joud and Wail for always being there whenever I

needed them in time of happiness and sadness. They were my family in Raleigh and I could

always count on them. Our gatherings and arguments will always bring to me a nice memory

of great people I was fortunate to be surrounded by during my stay in the U.S.

Finally, I would like to thank my little son Hamza who always put a smile on my face in

spite of all the stress and tension I got through during my graduate career. His presence was a

landmark in my life and looking at him is always encouraging me to be the best I can be.

I would like to express my sincere thanks to the Kingdom of Saudi Arabia for funding

me throughout my graduate studies and for their continued support through the Saudi

Arabian Cultural Mission. This project was also supported by NSF CAREER grant No. CCF-

0092832, NSF grant No. CCF-0429843, and Intel Corporation. Any opinions, findings, and

conclusions or recommendations expressed in this dissertation are those of the author and do

not necessarily reflect the views of the National Science Foundation.

vi

TABLE OF CONTENTS

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

ABBREVIATIONS ..xv

Chapter 1 Introduction ...1

1.1 Branch misprediction tolerance techniques .. 2

1.2 Transparent Control Independence (TCI) ... 5

1.3 Thesis contributions .. 9

1.4 Thesis organization ... 10

Chapter 2 Experimental method ...11

2.1 Simulators ... 11

2.1.1 Trace-driven timing simulator ... 11

2.1.2 Detailed execution-driven timing simulator .. 12

2.2 Benchmarks... 15

Chapter 3 Branch misprediction tolerance techniques ...16

3.1 Branch delay slots ... 16

3.2 Multipath ... 18

3.3 Predication .. 20

3.4 Control independence ... 23

3.5 Qualitative comparison ... 27

3.6 Quantitative comparison ... 31

3.6.1 Effect of branch confidence .. 31

vii

3.6.2 Performance potential in wider processors ... 41

Chapter 4 Control independence support mechanisms ...49

4.1 Reconvergent point ... 49

4.1.1 Compiler .. 50

4.1.2 Heuristics ... 51

4.1.3 Dynamic reconvergence predictor .. 52

4.1.4 Performance impact of reconvergent point selection 54

4.2 Control-Flow Stack (CFS) .. 56

4.2.1 Single branch ... 56

4.2.2 Nested branches ... 57

4.2.3 Reconvergent point sharing and CFS merging ... 58

4.2.4 Recursion ... 60

4.2.5 CFS violation detection and recovery ... 62

4.2.6 Additional CFS functions .. 64

4.3 Identifying CIDD instructions .. 65

4.3.1 Register dependencies (Influenced Register Set (IRS)) 66

4.3.1.1 Generating the IRS using a compiler ... 67

4.3.1.2 Generating the IRS using the reconvergence predictor 67

4.3.1.3 Performance impact of IRS ... 68

4.3.1.4 Optimizing the IRS .. 70

4.3.1.5 IRS violation detection and recovery .. 71

4.3.2 Memory dependencies (load poisoning) ... 72

viii

4.3.2.1 Store/branch set predictor .. 73

4.3.2.2 Load violation detection and recovery .. 74

Chapter 5 Control independence: Analysis of implementation aspects and

performance factors ...77

5.1 Repairing the CD region ... 77

5.1.1 Unordered resources .. 78

5.1.2 Ordered resources .. 79

5.2 Repairing the CI region ... 84

5.2.1 Repairing the data dependencies of CIDD instructions 84

5.2.1.1 Sequencing CI instructions (Seq CI) ... 85

5.2.1.2 Proxy move instructions (Proxy) ... 86

5.2.1.3 Sequencing CIDD instructions (Seq CIDD) .. 87

5.2.2 Re-executing CIDD instructions ... 89

5.2.2.1 CIDD instructions’ resources .. 90

5.2.2.2 CIDI instructions’ resources .. 91

5.2.3 Control independence configurations .. 92

5.2.4 Results (resource and bandwidth overheads) .. 95

Chapter 6 Transparent Control Independence (TCI) ...107

6.1 High-level overview of TCI microarchitecture ... 107

6.2 Identifying and inserting CIDD instructions into RXB .. 109

6.2.1 Reconvergent point and Influenced Register Set (IRS) predictor 109

6.2.2 Control-Flow Stack (CFS) .. 110

ix

6.2.3 Poison vectors ... 112

6.2.4 Inserting CIDD instructions into the RXB .. 113

6.3 Misprediction recovery ... 113

6.3.1 Reconstructing the RXB.. 114

6.3.2 Poisoning via repair rename map .. 119

6.3.3 Reinjecting CIDD instructions .. 120

6.3.4 Merging repair/speculative rename maps ... 122

6.4 Writing source values into the RXB ... 122

6.5 Conventional recovery .. 126

6.6 Servicing multiple branch mispredictions .. 126

6.7 Store and load queues ... 127

6.8 Branch-sets and CIDD loads ... 134

6.9 Load violation recovery .. 135

6.10 Reconvergence predictor misinformation ... 136

6.11 Results ... 138

6.11.1 Performance and analysis .. 138

6.11.2 Instruction breakdown ... 141

6.11.3 Branch prediction and branch misprediction servicing policies 143

6.11.4 Memory dependence predictor .. 145

6.11.5 Sensitivity to the number of checkpoints and poison vector bits 147

6.11.6 Sensitivity to the number of CFSs and to IRS optimizations 149

6.12 Additional related work .. 151

x

Chapter 7 Summary and future work ...152

Chapter 8 Bibliography ..155

xi

LIST OF TABLES

Table 1. Baseline microarchitecture configuration. .. 13

Table 2. Benchmarks. ... 15

Table 3. Comparison of branch misprediction tolerance techniques. 30

Table 4. Resource and bandwidth usage for repairing CIDD instructions. 94

Table 5. Poisoning using the repair rename map. ... 120

Table 6. Renaming using the repair rename map. .. 121

Table 7. Benchmark statistics and Base/Perfect results. ... 137

xii

LIST OF FIGURES

Figure 1. Harmonic mean IPC with perfect vs. real branch prediction, for SPEC95/SPEC2k

integer benchmarks. ... 2

Figure 2. Example control-flow region. .. 3

Figure 3. Transparent Control Independence (TCI). .. 8

Figure 4. IPC for CPR baseline vs. SS baseline. .. 14

Figure 5. Multipath example. .. 19

Figure 6. Dynamic predication example. .. 22

Figure 7. Control-independence skip (CI-skip) example. ... 24

Figure 8. Control-independence speculate (CI-speculate) example. 26

Figure 9. Branch misprediction tolerance techniques with varying confidence thresholds

(TH) and maximum branch region size (RS). .. 34

Figure 10. Branch misprediction tolerance techniques with varying confidence thresholds

(TH) and maximum branch region size (RS) (individual benchmarks). 36

Figure 11. Branch misprediction tolerance techniques with varying confidence thresholds

(TH) and maximum branch region size (RS) (individual benchmarks). 37

Figure 12. Branch misprediction tolerance techniques with varying confidence thresholds

(TH) and maximum branch region size (RS) (individual benchmarks). 38

Figure 13. Branch misprediction tolerance techniques with varying confidence thresholds

(TH) and maximum branch region size (RS) (individual benchmarks). 39

Figure 14. Branch misprediction tolerance techniques with varying confidence thresholds

(TH) and maximum branch region size (RS) (individual benchmarks). 40

xiii

Figure 15. Branch misprediction tolerance techniques with varying issue width. 42

Figure 16. Branch misprediction tolerance techniques with varying issue width (individual

benchmarks). .. 44

Figure 17. Branch misprediction tolerance techniques with varying issue width (individual

benchmarks). .. 45

Figure 18. Branch misprediction tolerance techniques with varying issue width (individual

benchmarks). .. 46

Figure 19. Branch misprediction tolerance techniques with varying issue width (individual

benchmarks). .. 47

Figure 20. Branch misprediction tolerance techniques with varying issue width (individual

benchmarks). .. 48

Figure 21. Example of true vs. speculative reconvergent points. ... 55

Figure 22. Function “foo” recursively called. ... 60

Figure 23. Sequence of instructions from the CI region. .. 89

Figure 24. Performance of different CIDD repair models (harmonic mean). 97

Figure 25. Performance of different CIDD repair models (individual benchmarks). 99

Figure 26. Performance of different CIDD repair models (individual benchmarks). 100

Figure 27. Performance of different CIDD repair models (individual benchmarks). 101

Figure 28. Sensitivity to RXB size. .. 103

Figure 29. Sensitivity to RXB size (individual benchmarks). .. 104

Figure 30. Sensitivity to RXB size (individual benchmarks). .. 105

Figure 31. Sensitivity to RXB size (individual benchmarks). .. 106

xiv

Figure 32. Transparent control independence (TCI) architecture. 108

Figure 33. RXB reconstruction example. ... 118

Figure 34. Example showing the relationship between stores and loads in the LSQ: (a)

Ordered unified LSQ. (b) Ordered split SQ/LQ. (c) Partially ordered LSQ. 129

Figure 35. Structures of the POLSQ (excluding SQ-TB), with contents corresponding to the

running example. .. 131

Figure 36. Store-load forwarding using the POLSQ. ... 132

Figure 37. Detecting a memory dependence violation using the POLSQ. 133

Figure 38. Performance improvement for 4-issue pipeline. ... 137

Figure 39. Performance improvement for 8-issue pipeline. ... 137

Figure 40. Breakdown of branch mispredictions. ... 140

Figure 41. Breakdown of all instructions. ... 142

Figure 42. Branch prediction and branch misprediction servicing policies. 145

Figure 43. Memory dependence predictors. ... 147

Figure 44. TCI IPC results with varying number of checkpoints. .. 148

Figure 45. TCI IPC results with a single or multiple CFSs while using an optimized or

unoptimized IRS. ... 150

xv

ABBREVIATIONS

ILP – Instruction-Level Parallelism

IPC – Instructions Per Cycle

CI – Control-Independent

CD – Control-Dependent

CIDD – Control-Independent Data-Dependent

CIDI – Control-Independent Data-Independent

CFS – Control-Flow Stack

TCI – Transparent Control Impendence

RXB – Re-Execution Buffer

RP – Reconvergent Point

1

Chapter 1

Introduction

The performance of microprocessors has shown remarkable improvement in the past two

decades. This improvement can be attributed to two factors: faster transistors, through

technology advancements, and higher levels of instruction-level parallelism (ILP), through

microarchitecture advancements. Technology trends remain strong for the foreseeable future.

However, continuing to increase ILP is jeopardized by control-flow limits and ever-

increasing memory latency. This dissertation is concerned with control-flow limits.

Modern superscalar processors extract ILP from a reservoir of instructions called the

instruction window. The larger the instruction window, the more likely the processor can find

independent instructions to execute in parallel. Because branches occur frequently (one

branch every 5-10 instructions), processors must speculate past many branches to form a

deep instruction window. Unfortunately, a single branch misprediction causes the processor

to discard 100’s of speculative instructions from the instruction window. Because the penalty

is so high, even a seemingly mild misprediction rate (e.g., 5%-10%) profoundly limits ILP.

Figure 1 shows the utilization gap between real and perfect branch prediction across varying

issue widths, using a detailed cycle-level simulator of superscalar processor with a state-of-

the-art perceptron branch predictor (Jimenez, et al., 2001) and a pipeline depth and memory

hierarchy modeled after the Pentium-4. With perfect branch prediction, a large window is

able to expose sufficient instruction-level parallelism in many benchmarks. However, with

2

real branch prediction, a misprediction rate of only 5%-10% can significantly limit

performance.

Figure 1. Harmonic mean IPC with perfect vs. real branch prediction, for

SPEC95/SPEC2k integer benchmarks.

Because of the crucial role that branch prediction plays in extracting ILP, it has received

much attention in past decades. Current branch predictors are able to achieve high degrees of

accuracy (higher than 90% on most benchmarks). However, completely eliminating branch

mispredictions remains an open challenge. Therefore, techniques for tolerating and reducing

the penalty of branch mispredictions are increasingly important.

1.1 Branch misprediction tolerance techniques

Figure 2 shows a branch and the instructions following it. The branch can take one of

two control-flow paths. The point where control-flow merges is called the reconvergent point

(RP). Instructions between the branch and its reconvergent point are control-dependent (CD)

on the branch – whether or not they are fetched depends on the branch outcome. Instructions

after the reconvergent point are control-independent (CI) of the branch and will be fetched

0

2

4

6

8

10

12

14

16

18

4 8 12 16 20 24 28 32

H
a

r
m

o
n

ic
 m

e
a

n
 I

P
C

Issue width

Perfect

Base

3

regardless of the branch outcome. However, some of the CI instructions are dependent on the

branch outcome indirectly through data dependences (register or memory) and are labeled as

control-independent data-dependent (CIDD) instructions. For example, in the figure, the

consumer of R5 may get a different version of R5 depending on which path the branch takes.

All other instructions in the CI region are control-independent data-independent (CIDI)

instructions. CIDI instructions are truly independent of the branch and preserving them is the

key to tolerating branch mispredictions.

Figure 2. Example control-flow region.

Branch misprediction tolerance implementations can be divided into four techniques:

multipath, predication, control independence with skipping (CI-skip), and control

independence with speculation (CI-speculate).

• Multipath: Multipath fetches and executes both paths after the branch, duplicating the CI

instructions. The wrong CD and CI instructions are discarded when the branch executes.

• Predication: Predication fetches and executes both CD paths up to the reconvergent

point. Then, the CI instructions are fetched like usual. However, because the CI

control-independent
(CI)

branch

R5����

����R5

R5����

RP

control-independent
data-dependent

(CIDD)

control-dependent
(CD)

control-independent
data-independent

(CIDI)

4

instructions are not duplicated, the execution of CIDD instructions is delayed until the

branch outcome is known.

• CI-skip: CI-skip does not predict the branch direction and instead jumps immediately to

the reconvergent point and fetches the CI instructions. Only when the branch outcome is

known does CI-skip fetch the correct CD instructions. Like predication, CI-skip must

delay CIDD instructions until the branch outcome is known.

• CI-speculate: CI-speculate fetches and executes the predicted CD path and the CI

instructions, like conventional speculation. If the branch was mispredicted, then, selective

recovery is attempted upon resolving the branch outcome. Selective recovery requires

fetching and executing the correct CD instructions, and selectively re-executing the

CIDD instructions.

The way CD and CI instructions are handled affects (1) the degree of branch misprediction

tolerance and (2) the penalty imposed on correctly predicted branches.

Multipath, predication, and CI-skip incur a penalty on correctly predicted branches.

Multipath wastes fetch and execution bandwidth on the alternate path of a correctly predicted

branch, including duplicating CI instructions after the reconvergent point. Predication fetches

both CD paths of a correctly predicted branch, thereby wasting fetch and execution

bandwidth on the alternate CD path, and also needlessly delays the execution of the CIDD

First thesis claim:

For a processor with realistic resources, the CI-speculate

technique outperforms other branch misprediction tolerance techniques, because it does

not penalize correctly predicted branches.

5

instructions. CI-skip needlessly delays the execution of correctly predicted CD instructions

and the CIDD instructions that depend on them. In practice, these penalties on correctly

predicted branches partially or fully offset any gains from tolerating mispredicted branches.

In some cases, performance is degraded with respect to conventional speculation.

In this dissertation, the four branch misprediction tolerance techniques are qualitatively

and quantitatively compared. The comparison reveals that CI-speculate is the best performer.

1.2 Transparent Control Independence (TCI)

Since CI-speculate is the best performer, we next focus on analyzing CI-speculate

implementations to understand their limitations. Based on this analysis, we develop a new

CI-speculate implementation.

Prior CI-speculate implementations do not truly decouple CIDI instructions from CD and

CIDD instructions. The root cause is that they explicitly maintain program order. The

microarchitecture contribution of this dissertation is Transparent Control Independence

(TCI). TCI decouples CIDI instructions from CD and CIDD instructions, by focusing on

repairing program state instead of program order. TCI fully capitalizes on the work

performed by CIDI instructions, by not wasting bandwidth on CIDI instructions during

Second thesis claim:

To achieve the full potential of CI-speculate, the microarchitecture must

truly decouple misprediction-independent (CIDI) instructions

from misprediction-dependent (CD & CIDD) instructions.

6

selective branch misprediction recovery and not delaying the freeing of CIDI instructions’

resources.

Explicit order is maintained by prior CI-speculate implementations for two main

reasons:

1) Previous implementations evolved from reorder buffer (ROB) based designs. The

ROB buffers all instructions in program order to implement in-order retirement.

Hence, the late-fetched correct CD instructions need to be reordered with respect to

the early-fetched CI instructions.

2) When CIDD instructions re-execute with changed values from the repaired CD

region, they may also need to re-reference unchanged values from CIDI instructions.

Ultimately, this means dependencies need to be maintained or recreated among co-

mingled CIDI and CIDD instructions.

Implementations that explicitly maintain program order sacrifice design efficiency and

performance.

We propose that it is sufficient to mimic the effect of program order between

misprediction-independent and misprediction-dependent instructions. First, we depart from

the traditional ROB-based substrate, in favor of a more resource-efficient checkpoint-based

substrate (Akkary, et al., 2003) (Cristal, et al., 2004) (Hwu, et al., 1987) (Moudgill, et al.,

1993). Leveraging coarse-grain retirement of a checkpoint-based substrate frees us from the

fine-grain ordering constraint imposed by the ROB. Now, late-fetched correct CD

instructions do not need to be reordered with respect to early-fetched CI instructions. Second,

CIDD instructions are identified as they are fetched and their CIDI-supplied source values

7

are checkpointed, breaking any dependencies on CIDI instructions. The CIDD instructions

along with their checkpointed source values are set aside in a FIFO re-execution buffer

(RXB) in preparation for recovery. This is the first implementation that truly decouples the

CIDI instructions from the CIDD instructions.

When a branch is mispredicted, its incorrect CD instructions are fetched followed by CI

instructions. All instructions – correct and incorrect – complete and speculatively release

cycle-critical resources as they drain from the pipeline (physical registers, issue queue

entries, etc.). When the mispredicted branch resolves, recovery is achieved by fetching a self-

sufficient condensed “recovery program”: the correct CD instructions (fetched from the

instruction cache), the CIDD instructions (fetched from the RXB), and all input values

needed to launch the correct CD and CIDD instructions (the branch’s checkpoint and the

checkpointed CIDI-supplied source values of CIDD instructions). Recovery is effectively

transparent to the pipeline, in that speculative state is not rolled back and recovery appears as

a jump to code. TCI yields a highly streamlined pipeline that quickly recycles resources

based on conventional speculation, enabling a large window with small cycle-critical

resources, and prevents many mispredictions from disrupting this large window.

Figure 3 shows a high-level view of TCI. Dynamic instructions are shown from left to

right in the order in which they are fetched (fetch time). Correctly fetched and executed

instructions are shown in white and incorrectly fetched or executed instructions are shown in

gray. Correctly fetched instructions are labeled with their order in sequential program order

(incorrect CD instructions are labeled with x’s instead). A branch is mispredicted at the

beginning of the fetch timeline. Thus, incorrect CD instructions are fetched first followed by

8

CIDI and CIDD instructions. The first correctly fetched instruction is instruction 4.

Sometime later, after fetching instruction 14, the misprediction is finally detected. At this

point, the independent (thanks to input values from the branch’s checkpoint and RXB)

recovery program is fetched. Notice the relaxed order: the recovery program’s instructions 1,

2, 3, 6’, 10’, and 12’ come after the speculative program’s instruction 14 in the timeline. The

pipeline does not differentiate between the speculative and recovery programs, as shown. The

speculative state is not rolled back. Instead, the recovery program transparently repairs the

speculative state.

Figure 3. Transparent Control Independence (TCI).

incorrect
CD C

ID
I

C
ID

I

correct
CD

C
ID

I

C
ID

I
C

ID
I

C
ID

I

Streamlined Pipeline:
No rollback,

Undifferentiated
instruction stream

drain

free
resources

allocate
resources

speculative program

self-sufficient
recovery program

checkpointed
values

branch
checkpoint

mispredict
branch

detect
mispredict

FETCH TIME

C
ID

I

C
ID

I

C
ID

D

C
ID

D

C
ID

D

C
ID

I
C

ID
I

C
ID

D

C
ID

D
C

ID
D

1 2 3 6' 10'12'

x x x x 4 5 6 7 8 9 10 11 12 13 14 15 16
fetch

9

1.3 Thesis contributions

This thesis makes the following chief contributions:

1) Comparison of branch tolerance techniques (Chapter 3):

� Comparison of bandwidth overheads of branch misprediction tolerance techniques.

Various techniques (delay slots, multipath, static/dynamic predication, CI-skip, and

CI-speculate) are analyzed based on branch coverage, branch misprediction penalty

reduction, and overhead incurred by correctly predicted branches. Quantitative

comparisons are also presented.

2) Analysis of CI-speculate approaches (Chapter 5):

� Analysis of overheads of repairing CD instructions. The thesis analyzes issues

associated with removing the wrong CD instructions from the middle of the window

and inserting the correct CD instructions in the middle of the window. Processor

resources impacted by CD repair are identified and possible solutions are discussed.

� Comparison of resource and bandwidth overheads for repairing CIDD instructions.

The thesis analyzes factors that reduce the performance of previous CI-speculate

approaches and quantifies the impact of these factors.

3) Transparent Control Independence (Chapter 4 and Chapter 6):

� TCI concept and microarchitecture. A new approach is proposed that fully decouples

misprediction-independent instructions from misprediction-dependent instructions,

yielding a highly streamlined microarchitecture for exploiting control independence.

The key insight is checkpointing CIDI-supplied source values of CIDD instructions.

Another important aspect is using a relaxed, coarse-grain retirement substrate.

10

� Identifying CIDD instructions. Novel mechanisms are developed for assembling the

CIDD instructions: the control-flow stack (CFS) for detecting arbitrary and nested

reconvergent points, predicting the influenced register set (IRS), poisoning registers

for identifying CIDD instructions, branch-sets for identifying CIDD loads, etc.

� RXB reconstruction. Since CIDD slices of multiple branches are co-mingled within

the RXB, servicing a branch misprediction may require repairing CIDD slices of

other branches and selectively removing CIDD instructions of the resolved branch. A

simple unified solution – identify CIDD instructions in the recovery program itself, as

was done the first time for the speculative program – enables arbitrary adjustments to

the RXB while preserving its simple FIFO policy.

� Renaming partial programs: We propose a novel technique for renaming the recovery

program despite its CIDI gaps.

1.4 Thesis organization

 Chapter 2 discusses the experimental method followed in this thesis. Chapter 3 describes

how branch misprediction tolerance techniques function, discusses relevant related work, and

provides a qualitative and quantitative comparison among the techniques. Chapter 4

discusses control independence support mechanisms. Chapter 5 investigates control

independence implementations and challenges, including qualitative and quantitative

comparisons with related work. Chapter 6 presents the TCI microarchitecture in detail,

including results and additional related work. Finally, Chapter 7 provides a summary and

future work.

11

Chapter 2

Experimental method

2.1 Simulators

I have developed two custom timing simulators. Both use the PISA ISA from the

Simplescalar toolkit (Burger, et al., 1996).

2.1.1 Trace-driven timing simulator

In Chapter 3, I investigate previous branch misprediction tolerance techniques and

evaluate their effectiveness. I use a fast trace-driven timing simulator to generate the results.

The simulator focuses on modeling fetch bandwidth, execution bandwidth, and true

dependencies among instructions in detail, since the various techniques tolerate branch

mispredictions with different bandwidth requirements and dependency stalls. Structural

resources are unbounded to assess the potential of all techniques. The window size is,

however, limited to 8192 instructions.

Instruction fetch is modeled using an ideal trace cache and a perceptron branch predictor

(Jimenez, et al., 2001). Oracle memory disambiguation is used. The memory hierarchy

consists of a 64KB L1 data cache, a 64KB L1 instruction cache, and a 2MB unified L2

cache.

For the baseline, predication, CI-skip, and CI-speculate, the trace-driven simulator

models fetch and execution bandwidth consumed by wrong-path instructions. On the other

hand, in modeling multipath, we opted for an upper performance bound using some oracle

information. First, the simulator oracally identifies the correct thread and only allows forking

12

from this thread. This allows our multipath implementation to achieve higher performance by

avoiding forking from the incorrect threads, saving fetch and execution bandwidth

accordingly. Second, we only allow instructions from the correct thread to consume

execution bandwidth. However, we do model sharing fetch bandwidth among all active

threads. Despite only modeling sharing of fetch bandwidth, multipath performs weakly when

compared with the other branch misprediction tolerance techniques being studied.

2.1.2 Detailed execution-driven timing simulator

The different CI-speculate architectures in Chapter 5 and the Transparent Control

Independence architecture (TCI) in Chapter 6 are modeled using a detailed execution-driven

cycle-level simulator. The simulator fetches and executes both correct and incorrect

instructions as a real processor would, producing speculative values that affect the

processor’s state, generating bad events such as load exceptions and so forth. A functional

simulator is run independently and in parallel with the detailed execution-driven timing

simulator to verify its retired outcomes.

Table 1 shows the baseline microarchitecture parameters. For uniform comparisons, the

baseline is TCI with the dynamic reconvergence predictor disabled, which ensures

conventional (full) recovery for all branch mispredictions. Thus, the baseline is a checkpoint-

based superscalar processor with aggressive register reclamation (Akkary, et al., 2003).

13

Table 1. Baseline microarchitecture configuration.

L1 I & D caches
64KB, 4-way, 64B line,

LRU, L1hit = 1 cycle

L2 unified cache

2MB, 8-way, 64B line,

LRU, L2hit = 10 cycles,

L2miss = 200 cycles

Branch predictor perceptron (128KB)

Memory dependence prediction store/branch sets

Physical registers 256

Checkpoints 16

CFS 16 entries

Issue width 4 or 8

pipeline stages 20

Issue queue 32 or 64

Load/store queue (LSQ) 512

Re-execution buffer (RXB) 256

Temp buffer (TB) 128

Checkpoint-based processors use cycle-critical resources efficiently. They can form very

large logical windows with small cycle-critical physical resources. However, checkpoint-

based processors introduce a penalty when servicing mispredicted branches that do not have

checkpoints. In this case, misprediction recovery requires rolling back the processor state to

the closest prior branch checkpoint, squashing even good instructions between the checkpoint

and the mispredicted branch. On the other hand, conventional superscalar processors do not

have this additional penalty.

We compare our checkpoint-based baseline to a conventional ROB-based superscalar

processor, to justify using the former as a baseline. Figure 4 shows IPCs of the checkpoint-

based superscalar processor (CPR) and a conventional superscalar processor (SS) with equal

14

resources. Figure 4(a)-(c) give the results of individual benchmarks, whereas Figure 4(d)

shows several harmonic mean IPC results. In this experiment, CPR is allocated only 16

branch checkpoints, whereas SS is allocated an unbounded number of checkpoints. From the

figures, we observe that CPR outperforms SS on average.

(a) (b)

(c) (d)

Figure 4. IPC for CPR baseline vs. SS baseline.

0

1

2

3

4

bzip compress crafty gap gcc

IP
C

CPR

SS

0

1

2

3

4

go gzip ijpeg li mcf
IP

C

CPR

SS

0

1

2

3

4

parser perl twolf vortex vpr

IP
C

CPR

SS

0

1

2

3

4

Harmonic mean -
excluding mcf

Harmonic mean Harmonic mean -
high br. misp. rate

IP
C

CPR

SS

15

2.2 Benchmarks

We use 11 SPEC2K integer benchmarks and 4 SPEC95 integer benchmarks compiled

with the gcc-based Simplescalar compiler (Burger, et al., 1996) for the PISA ISA with -O3

optimization. Reference inputs are used.

For all benchmarks, a single simulation point of 100 million instructions was selected

using the SimPoint 3.2 toolkit (Sherwood, et al., 2002). In addition, predictors and caches are

warmed up for 10 million instructions prior to starting the simulation point.

Table 2 shows benchmarks, inputs, and selected simulation points.

Table 2. Benchmarks.

Benchmarks SimPoint 3.2 (100m)

bzip2-program-ref 406
compress95-bigtest-ref 374
crafty-ref 1466
gap-ref 1619
gcc-expr-ref 89
go95-5stone21-ref 138
gzip-graphic-ref 774
ijpeg95-specmun-ref 84
li95-ref 329
mcf-ref 441
parser-ref 2803
perlbmk-diffmail-ref 117
twolf-ref 1075
vortex-two-ref 407
vpr-route-ref 528

16

Chapter 3

Branch misprediction tolerance techniques

Branch prediction can only improve the performance of a superscalar processor, because

the processor will otherwise stall waiting for the branches to execute. This significant

performance gain is a result of keeping the window full of useful instructions. However,

branch prediction has the disadvantage of wasting fetch and execution bandwidth when a

misprediction occurs limiting the effective window size. Branch misprediction tolerance

techniques like branch delay slots (Hennessy, et al., 1982) (Gross, et al., 1982) (Patterson, et

al., 1981), multipath (Ahuja, et al., 1998) (Heil, et al., 1996) (Klauser, et al., 1998) (Uht, et

al., 1995) (Wallace, et al., 1998) (Wallace, et al., 1999), predication (Allen, et al., 1983)

(Kim, et al., 2006) (Kim, et al., 2005) (Klauser, et al., 1998) (Mahlke, et al., 1995) (Smith, et

al., 2006), and control-independence (Al-Zawawi, et al., 2007) (Hilton, et al., 2007) (Cher, et

al., 2001) (Chou, et al., 1999) (Gandhi, et al., 2004) (Rotenberg, et al., 1999) (Rotenberg, et

al., 1999) (Sodani, et al., 1997) have the potential to reduce the penalty associated with

branch mispredictions.

3.1 Branch delay slots

When pipelined processors were first introduced, processors had to deal with the fact of

not having the outcomes of branches at fetch time. The outcome of the branches would only

be known some cycles later when the branch instructions traveled down the processor

pipeline and executed. This introduced a control hazard in the pipeline. The simplest remedy

for the control hazard was to insert stalls in the pipeline from the time the branch is fetched

17

and until the branch outcome is known. This solution degraded the potential performance of

pipelining since the processor is stalling and not doing useful work.

Delayed branches were one of the first techniques to tolerate branch stalls in pipelined

processors. This technique attempts to overlap branch stall cycles with useful instructions by

delaying acting on the outcome of the branch. The ISA architects a fixed number of branch

delay slots that are guaranteed to be fetched and executed after the branch regardless of its

outcome. A compiler would then try to fill the branch delay slots with branch-independent

instructions. If the branch delay slots are completely filled, then the branch stalls are

completely hidden, otherwise, only partial tolerance is achieved. This technique evolved on

single-issue in-order processors, where the branch stall penalty was only a few instructions

(1-3 instructions). In fact, the compiler cannot always fill even a single delay slot (Gross, et

al., 1982).

As an alternative to branch delay slots, branch prediction was later successfully used to

overcome the control hazard in pipelined processors. Moreover, branch prediction is capable

of tolerating hundreds of stall cycles in modern out-of-order processors. Unfortunately,

branch prediction is not always effective in tolerating a control hazard. Occasionally, branch

predictions are wrong and the stall cycles are exposed, causing significant performance loss.

In these situations, branch delay slots can play a limited role in minimizing the impact of a

branch misprediction by reducing the misprediction penalty by a few instructions. In a

modern processor, a branch misprediction can have a penalty that spans hundreds of

instructions. Filling this many delay slots, statically, is impractical. Hence, branch delay slots

18

are not considered a viable solution to tolerate branch mispredictions in the presence of more

effective techniques.

3.2 Multipath

Multipath reduces the penalty of a branch misprediction by speculatively executing both

paths of a branch. When the branch outcome is known, the incorrect path is discarded. This

allows multipath to avoid part of the misprediction penalty, since some instructions on the

correct path have been executed.

Figure 5 presents an example of covering a branch misprediction with multipath. After

fetching the branch in Figure 5(a), the processor follows both possible paths. Hence, the

processor avoids the need to predict a single path to follow. Figure 5(b) shows how both the

wrong CD instructions from path 1 and the correct CD from path 2 are fetched and executed

simultaneously. Notice that the CI instructions are duplicated and that the CIDD instruction

consuming R5 will execute with different source operands independently on both paths.

Unfortunately, CIDI instructions will needlessly execute redundantly on both paths, since we

know that their results will be the same. In Figure 5(c), the branch outcome is known and the

wrong path is discarded. Resources are reclaimed from path 1 and reallocated toward path 2.

Multipath branch misprediction tolerance comes at the price of dividing the processor’s

resources between correct and incorrect execution paths. This facet can also degrade the

performance of correctly predicted branches covered by multipath needlessly, because not all

resources are allocated to the correctly predicted path as would be the case in a normal

processor. This problem is worsened when covering multiple branches with multipath, as the

number of simultaneous paths pursued increases exponentially with the number of covered

19

branches. Prior implementations of multipath have lessened the impact of this problem by

selectively applying multipath based on branch confidence (Heil, et al., 1996) (Klauser, et al.,

1998) (Wallace, et al., 1998) and other heuristics (Uht, et al., 1995).

(a)

(b) (c)

Figure 5. Multipath example.

p

branch

R5

R5

path 1 path 2

control-independent
data-dependent

(CIDD)

branch

reconv.
point

R5

R5

co
nt

ro
l-d

ep
en

de
nt

(C

D
)

R5

R5

wro
ng actual

control-independent
data-dependent

(CIDD)

branch

reconv.
point

R5

R5

co
nt

ro
l-d

ep
en

de
nt

(C

D
)

R5

20

3.3 Predication

Predication takes a different approach to branch misprediction tolerance. In predication,

all control-dependent instructions are fetched regardless of the branch outcome and the

execution of the control-independent data-dependent (CIDD) instructions is delayed until the

branch is resolved. In doing so, predication avoids the need to predict covered branches,

hence, the branch mispredictions and their negative effects are eliminated altogether.

Predication can be performed statically by a compiler (Allen, et al., 1983) (Mahlke, et al.,

1995), or dynamically in the processor (Kim, et al., 2006) (Kim, et al., 2005) (Klauser, et al.,

1998).

Static predication leverages ISA support and typically can convert 30% of branches

(Tyson, 1994). Static predication’s low coverage can be attributed to:

1) Some control-flow constructs are hard to represent in static form after being

predicated (for example: loops).

2) Predication may require in-lining some functions. This increases the size of the code

and could be a limiter on the amount of predication that can be practically done.

3) Some branches do not have their targets available at compile time due to indirect calls

or calls to functions in dynamically linked libraries.

4) Some branches may have many possible paths, such as switch statements, making

predication unreasonable.

On the other hand, dynamic predication can partially overcome these challenges and

achieves higher branch coverage, by leveraging dynamic information available to the

21

processor and the ability of the processor to unwind complex control-flow dynamically into

simple dynamic hammocks (Kim, et al., 2006) (Klauser, et al., 1998).

Predication avoids the need for predicting a branch but at a cost. In predication, both CD

paths of the branch are fetched and the execution of CIDD instructions is delayed until the

predicate outcome of the branch is known. This penalty affects all predicted branches

regardless of whether or not the branches would have been correctly predicted or

mispredictions under normal branch prediction. This indiscriminate penalty limits the benefit

of predication and could even degrade performance. Dynamic predication, with the help of

branch confidence, reduces this negative effect by trying to avoid predicating correctly

predicted branches (Kim, et al., 2006) (Kim, et al., 2005) (Klauser, et al., 1998).

Figure 6 shows an example of covering a branch misprediction with dynamic

predication. When the branch is first fetched in Figure 6(a), the processor identifies the

branch’s possible control paths either using branch prediction or leveraging information

provided by the compiler. In Figure 6(b), the processor fetches both CD paths, one after

another. Both the correct and incorrect CD instructions are executed. When the reconvergent

point is reached in Figure 6(c), the processor continues to fetch the CI instructions. Since the

branch outcome is not known, the processor needs to delay the execution of the CIDD

instructions (guard the CIDD instructions) to avoid consuming the wrong source operands

(Figure 6(d)). Once the branch outcome is known in Figure 6(e), the processor simply allows

the CIDD to execute with the correct source operands. Predication typically uses proxy move

instructions to forward the correct register productions from the CD region to the CI region.

22

In addition, we can optimize performance by stopping execution of the wrong CD

instructions once the branch outcome is known, since their results are not needed.

(a)

(b) (c)

(d) (e)

Figure 6. Dynamic predication example.

p

branch

R5

R5

path 1 path 2

control-independent
data-dependent

(CIDD)

branch

reconv.
point

R5

R5

control-
independent

(CI)

co
nt

ro
l-d

ep
en

de
nt

(C

D
)

R5

path 1 path 2

control-independent
data-dependent

(CIDD)

branch

reconv.
point

R5

R5

control-
independent

(CI)

co
nt

ro
l-d

ep
en

de
nt

(C

D
)

R5

path 1 path 2

control-independent
data-dependent

(CIDD)

branch

reconv.
point

R5

R5

control-
independent

data-independent
(CIDI)

co
nt

ro
l-d

ep
en

de
nt

(C

D
)

R5

R5

wro
ng actual

control-independent
data-dependent

(CIDD)

branch

reconv.
point

R5

control-
independent

data-independent
(CIDI)

co
nt

ro
l-d

ep
en

de
nt

(C

D
)

23

3.4 Control independence

Control independence is a dynamic technique that tolerates the penalty of a branch

misprediction by selectively repairing the processor’s state, meanwhile preserving the work

done by CIDI instructions (Al-Zawawi, et al., 2007) (Hilton, et al., 2007) (Cher, et al., 2001)

(Chou, et al., 1999) (Gandhi, et al., 2004) (Rotenberg, et al., 1999) (Rotenberg, et al., 1999)

(Sodani, et al., 1997). Two styles of control independence exist based on the way they handle

the CD instructions. The first style of control independence skips over the CD instructions of

a branch (the branch is not predicted) and then executes the CIDI instructions while guarding

the execution of the CIDD instructions (CI-skip) (Cher, et al., 2001). When the branch

outcome is known, the correct CD instructions are fetched and executed and then the guarded

CIDD instructions are allowed to execute.

In Figure 7, we go through an example of covering a branch misprediction with CI-skip.

After the branch is fetched in Figure 7(a), the processor needs to identify its reconvergent

point. The processor then diverts fetch to the reconvergent point in Figure 7(b), avoiding

fetching any CD instructions. Next, in Figure 7(c), CIDD instructions are identified and

guarded since their source operands may change. When the branch outcome is known in

Figure 7(d), the processor goes back and fetches the correct CD instructions. Finally, in

Figure 7(e), the guarded CIDD instructions are allowed to execute.

24

(a)

(b) (c)

(d) (e)

Figure 7. Control-independence skip (CI-skip) example.

p

branch

R5

R5

predicted actual

control-independent
data-dependent

(CIDD)

branch

reconv.
point

R5

R5

control-
independent

(CI)

co
nt

ro
l-d

ep
en

de
nt

(C

D
)

skip to
reconvergent

point
R5

predicted actual

control-independent
data-dependent

(CIDD)

branch

reconv.
point

R5

R5

control-
independent

data-independent
(CIDI)

co
nt

ro
l-d

ep
en

de
nt

(C

D
)

skip to
reconvergent

point

R5

predicted actual

control-independent
data-dependent

(CIDD)

branch

reconv.
point

R5

R5

control-
independent

data-independent
(CIDI)

co
nt

ro
l-d

ep
en

de
nt

(C

D
)

predicted

R5

actual

control-independent
data-dependent

(CIDD)

branch

reconv.
point

R5

R5

control-
independent

data-independent
(CIDI)

co
nt

ro
l-d

ep
en

de
nt

(C

D
)

25

The second style of control independence speculates down the predicted path of the CD

region and executes all CI instructions (CI-speculate) (Chou, et al., 1999) (Gandhi, et al.,

2004) (Rotenberg, et al., 1999) (Rotenberg, et al., 1999) (Sodani, et al., 1997). When a

branch misprediction is detected, the wrong CD instructions are selectively removed and

replaced by the correct CD instructions, followed by selectively re-executing the CIDD

instructions. CI-speculate only has to recover when a misprediction is detected, whereas CI-

skip penalizes a correctly predicted branch (unless the correctly predicted branch has no CD

instructions on the correct path and no CIDD instructions are encountered until the branch

resolves). CI-speculate benefits from the fact that prediction is correct most of the time and

avoids skipping correct CD instructions needlessly. So, CI-speculate achieves the

performance of speculation by not degrading performance when a branch is correctly

predicted. Moreover, CI-speculate is able to cover branch mispredictions and reduce their

performance penalty.

Figure 8 shows an example of a branch misprediction covered by CI-speculate. After the

branch is fetched in Figure 8(a), the processor predicts the outcome of the branch using the

branch predictor. In Figure 8(b), we fetch the CD instructions on the predicted path. Once the

reconvergent point is detected in Figure 8(c), the CD region has ended and we continue to

fetch the CI region. Notice that all CI instructions are fetched and executed with the

assumption that the prediction was correct. In Figure 8(d), the branch outcome is known and

we must start to recover from the branch misprediction. We first squash the wrong CD

instructions and go back to fetch the correct CD instructions from the actual path. Finally, in

Figure 8(d), we re-execute the CIDD instructions to complete branch misprediction recovery.

26

CIDD re-execution is needed since these instructions have executed initially with wrong

source operands produced by the wrong CD instructions.

(a)

(b)

(c)

(d) (e)

Figure 8. Control-independence speculate (CI-speculate) example.

p

branch

R5

predicted

control-independent
data-dependent

(CIDD)

branch

reconv.
point

R5

R5

control-independent
data-independent

(CIDI)

co
nt

ro
l-d

ep
en

de
nt

(C

D
)

R5

predicted actual

control-independent
data-dependent

(CIDD)

branch

reconv.
point

R5

R5

control-
independent

(CI)

co
nt

ro
l-d

ep
en

de
nt

(C

D
)

R5

predicted actual

control-independent
data-dependent

(CIDD)

branch

reconv.
point

R5

R5

control-
independent

(CI)

co
nt

ro
l-d

ep
en

de
nt

(C

D
)

predicted

R5

actual

control-independent
data-dependent

(CIDD)

branch

reconv.
point

R5

R5

control-
independent

data-independent
(CIDI)

co
nt

ro
l-d

ep
en

de
nt

(C

D
)

27

3.5 Qualitative comparison

The goal of branch misprediction tolerance techniques is to achieve the performance of

perfect branch prediction (all branches are correctly predicted). When using perfect branch

prediction, the processor is always occupied by correct and useful instructions, and the

processor does not encounter the delays and stall cycles associated with branch

mispredictions.

Hence, the success of a branch misprediction tolerance technique depends on three

factors:

1) Branch misprediction coverage: The percentage of branch mispredictions that can be

covered by a given branch misprediction tolerance technique dictates the branch

misprediction coverage.

2) Misprediction penalty: When a branch misprediction is covered with a given

technique, the penalty still exposed to the processor in the form of stall cycles or

wasted work (fetch and execution bandwidth) represents the branch misprediction

penalty of the technique.

3) Correct prediction penalty: Since branch mispredictions are not known at the time of

fetching the branch, we need to cover branches speculatively in anticipation of a

misprediction. If a correctly predicted branch is covered, the tolerating technique may

incur a penalty associated with this coverage. This penalty may degrade the

performance of the overall system compared with conventional misprediction

recovery which does not incur any penalty for a correctly predicted branch.

28

The ideal branch misprediction tolerance technique would cover all branch

mispredictions, have no misprediction penalty, and have no penalty for covering a correctly

predicted branch. Achieving this ideal solution is as challenging as achieving perfect branch

prediction. We talked briefly about the different solutions toward the branch misprediction

problem. Branch delay slots, multipath, static/dynamic predication, and skip/speculate

control independence variants try to improve performance by reducing the penalty of branch

mispredictions, however, each technique brings with it different compromises with respect to

branch misprediction coverage, exposed misprediction penalty, and overhead of covering a

correct prediction.

Multipath has the potential to cover all branch mispredictions but with a bandwidth

requirement that grows exponentially with the number of unresolved branches in the

window. This requirement can be potentially reduced using branch confidence. However, for

a limited issue machine, multipath is not able to achieve reasonable performance despite

good branch coverage. Whenever multipath covers a branch (whether correctly predicted or

not), it takes away from the available processor bandwidth. So, by definition, multipath

cannot achieve perfect utilization.

On the other hand, predication and control independence reduce the bandwidth

requirements needed by multipath, by avoiding duplicating instructions after the

reconvergent point is reached. This is very important, as we only waste bandwidth on the CD

instructions. This brings us that much closer to our goal of perfect bandwidth utilization.

Static predication has low branch coverage (as discussed in Section 3.3). On the other

hand, dynamic predication and control independence implementations achieve much higher

29

branch coverage than static predication by leveraging the ability of the dynamic instruction

window to inline all the code and resolve complex control-flow into simple sequential traces

of instructions without any loops.

Predication, CI-skip, and CI-speculate differ in the way they deal with the misprediction-

dependent instructions (CD instructions and CIDD instructions) of a covered branch. This

difference dictates the amount of misprediction penalty that can be tolerated and the amount

of penalty added to correctly predicted branches. In predication, both CD paths are fetched

(and possibly executed, depending on the implementation) and the execution of the CIDD

instructions is delayed (guarded) until the branch outcome is known. In CI-skip, both

fetching the CD instructions and executing the CIDD instructions are delayed until the

branch outcome is known. In CI-speculate, the predicted CD path is fetched and the CIDD

instructions are allowed to execute speculatively. However, when a branch misprediction is

detected, CI-speculate replaces the wrong CD instructions with the correct CD instructions

and re-executes the CIDD instructions to repair their state.

Table 3 compares the different branch recovery models with respect to branch coverage,

exposed misprediction penalty, and penalty incurred by covering correctly predicted

branches. In the context of an aggressive superscalar processor, it is important to choose a

branch misprediction tolerating technique that does not degrade the performance of the base

system. We noticed that branch delay slots, predication and multipath have the potential to

degrade performance when the branch is correctly predicted. This penalty can be reduced at

the expense of reduced branch coverage, using branch confidence. In addition, branch delay

slots do not have enough branch misprediction tolerance to cover the full penalty. On the

30

other hand, Control independence represents the middle ground, exhibiting medium branch

coverage (due to branches with no reconvergent points or branches with very large CD

regions) and low overheads. Within control independence styles, we choose to trust the

branch predictor and go with CI-speculate versus CI-skip that conceptually injects a

misprediction at every skipped branch. Notice, CI-speculate is the only technique that does

not degrade the performance of a correctly predicted branch, making it a suitable technique

to complement conventional branch recovery.

Table 3. Comparison of branch misprediction tolerance techniques.

Recovery
scheme

Branch
Coverage Misprediction Penalty Correct Prediction

Penalty

Squash-based
recovery(Base)

High Wrong CD + CIDD + CIDI None

Branch delay
slots

High
Base misprediction penalty

– # filled delay slots
empty delay slots

Multipath High
Base misprediction penalty

X (1 – 1 / #paths)
Base misprediction penalty

X (1 – 1 / #paths)

Predication -
static

Low Wrong CD + CIDD Wrong CD + CIDD

Predication -
dynamic

Medium Wrong CD + CIDD Wrong CD + CIDD

CI-skip Medium CIDD Correct CD + CIDD

CI-speculate Medium Wrong CD + CIDD None

31

3.6 Quantitative comparison

3.6.1 Effect of branch confidence

Figure 9 shows the harmonic mean IPC results for a 4-issue processor. The four modeled

branch misprediction tolerance techniques (CI-skip, CI-speculate, dynamic predication, and

multipath) are run with varying confidence thresholds (TH: 4, TH: 8, TH: 16, and TH: 32)

and varying maximum region sizes (RS= ∞, RS= 256, and RS= 32). The figure also shows

the results for a processor with squash-based misprediction recovery (Base), a processor with

perfect branch prediction (Perfect), and the branch misprediction tolerance techniques with

oracle confidence (Oracle Conf).

From Figure 9 (a)-(b), we observe that Perfect achieves significant performance gains

over Base and comes very close to the peak utilization of the processor. Perfect results mark

the performance upper bound for any branch prediction or branch misprediction tolerance

technique.

The upper bound for a specific branch misprediction tolerance technique can be

observed by leveraging oracle branch confidence (Oracle Conf). With Oracle Conf, all

branch mispredictions are covered, leading to the highest possible misprediction tolerance,

and all correctly predicted branches are not covered, preventing possible performance

degradations.

In Figure 9 (a)-(b), we notice that CI-skip with Oracle Conf has very high potential,

coming close to Perfect. This confirms that CI-skip has very high branch misprediction

tolerance. It is able to hide most of the branch misprediction penalty, exposing only the

guarding of the CIDD instructions (see Table 3). On the other hand, CI-speculate, dynamic

32

predication, and multipath only have medium performance potential with Oracle Conf. This

can be attributed to the fact that all three models expose a bigger portion of the branch

misprediction penalty when compared to CI-skip. In all three models, the wrong CD

instructions component of the misprediction penalty is exposed (see Table 3). It is also

interesting to see that these three models achieve very close results with oracle branch

confidence, averaged over the benchmarks

Now that we have seen the upper bound of each technique using Oracle Conf, we

investigate the real-world performance using real branch confidence. A 4096-entry branch

confidence predictor with resetting counters (Jacobsen, et al., 1996) is used to generate the

results. By varying the confidence threshold from 4 to 32, the number of branch

mispredictions covered by the branch misprediction tolerance technique is increased at the

cost of covering additional correctly predicted branches. In addition, the maximum branch

region size covered is varied. The region size of a branch is an indicator of the cost of

covering the branch with a given technique. The larger the branch region, the higher the cost

to cover the branch and the less likely the benefit is.

In Figure 9 (a)-(b), CI-skip shows slight improvement over Base with real branch

confidence. The performance peaks with a branch confidence threshold of 32 and a

maximum region size of 256. CI-skip performance is very far from the potential upper bound

shown by Oracle Conf, because CI-skip introduces a branch misprediction when covering a

correctly predicted branch. The added mispredictions add a penalty that offsets the savings of

covering true mispredictions and could possibly degrade performance with respect to Base.

33

On the other hand, CI-speculate shows substantial performance gains compared to CI-

skip. In fact, CI-speculate performance approaches the performance of Oracle Conf with a

threshold of 32 and without setting a maximum region size. The reason for this phenomenon

is that correctly predicted branches covered by CI-speculate do not perceive a penalty,

allowing CI-speculate to cover many branches, mispredicted or not, with low overheads.

As for dynamic predication, it degrades performance with respect to Base. Dynamic

predication performs best with a threshold of 4. Dynamic predication favors only covering

relatively small region sizes below 256. This degradation can be attributed to the high cost of

covering branches in a relatively narrow machine. Both multipath and dynamic predication

are very sensitive to branch confidence. To achieve reasonable results in a narrow machine,

we need a more accurate confidence predictor. Branch confidence is less of an issue in very

wide machines, as the overhead of covering correctly predicted branches is reduced.

34

(a)

(b)

Figure 9. Branch misprediction tolerance techniques with varying confidence

thresholds (TH) and maximum branch region size (RS).

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

CI-skip CI-speculate Dynamic predication Multipath

IP
C

Harmonic mean - excluding mcf

Perfect Oracle Conf RS = ∞ RS = 256 RS = 32 Base

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

CI-skip CI-speculate Dynamic predication Multipath

IP
C

Harmonic mean - benchmarks with high branch mispredi ction rate

Perfect Oracle Conf RS = ∞ RS = 256 RS = 32 Base

35

Figure 10, Figure 11, Figure 12, Figure 13, and Figure 14 present the IPC results for CI-

skip, CI-speculate, dynamic predication, and multipath for the individual benchmarks.

Several trends can be observed:

1) CI-speculate never degrades performance with respect to Base.

2) CI-speculate Oracle Conf results are lower than the Oracle Conf results of the other

techniques in some benchmarks (for example: bzip, compress, and li). Even so, CI-

speculate outperforms the other models in these benchmarks.

3) CI-skip outperforms CI-speculate in some benchmarks (for example: gap and twolf).

4) CI-skip has the potential to degrade performance with respect to Base (for example:

bzip, compress, crafty, gcc, li, and perl).

5) CI-skip favors different confidence threshold levels with different benchmarks. In gap,

for example, it favors a threshold of 32. However, in perl, it favors a threshold of 4.

6) Dynamic predication degrades performance most of the time in the narrow processor,

but shows some improvement in some benchmarks (for example: compress, gzip,

ijpeg, twolf, and vpr).

7) Multipath degrades performance on most benchmarks and only sees slight speedups in

vpr. The reason is that multipath is not suited for narrow processors and prefers very

wide processors.

36

(a)

(b)

(c)

Figure 10. Branch misprediction tolerance techniques with varying confidence

thresholds (TH) and maximum branch region size (RS) (individual benchmarks).

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

CI-skip CI-speculate Dynamic predication Multipath

IP
C

bzip

Perfect Oracle Conf RS = ∞ RS = 256 RS = 32 Base

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

CI-skip CI-speculate Dynamic predication Multipath

IP
C

compress

Perfect Oracle Conf RS = ∞ RS = 256 RS = 32 Base

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

CI-skip CI-speculate Dynamic predication Multipath

IP
C

crafty

Perfect Oracle Conf RS = ∞ RS = 256 RS = 32 Base

37

(a)

(b)

(c)

Figure 11. Branch misprediction tolerance techniques with varying confidence

thresholds (TH) and maximum branch region size (RS) (individual benchmarks).

2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

CI-skip CI-speculate Dynamic predication Multipath

IP
C

gap

Perfect Oracle Conf RS = ∞ RS = 256 RS = 32 Base

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

CI-skip CI-speculate Dynamic predication Multipath

IP
C

gcc

Perfect Oracle Conf RS = ∞ RS = 256 RS = 32 Base

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

CI-skip CI-speculate Dynamic predication Multipath

IP
C

go

Perfect Oracle Conf RS = ∞ RS = 256 RS = 32 Base

38

(a)

(b)

(c)

Figure 12. Branch misprediction tolerance techniques with varying confidence

thresholds (TH) and maximum branch region size (RS) (individual benchmarks).

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

CI-skip CI-speculate Dynamic predication Multipath

IP
C

gzip

Perfect Oracle Conf RS = ∞ RS = 256 RS = 32 Base

2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

CI-skip CI-speculate Dynamic predication Multipath

IP
C

ijpeg

Perfect Oracle Conf RS = ∞ RS = 256 RS = 32 Base

1.5

2.0

2.5

3.0

3.5

4.0

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

CI-skip CI-speculate Dynamic predication Multipath

IP
C

li

Perfect Oracle Conf RS = ∞ RS = 256 RS = 32 Base

39

(a)

(b)

Figure 13. Branch misprediction tolerance techniques with varying confidence

thresholds (TH) and maximum branch region size (RS) (individual benchmarks).

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

CI-skip CI-speculate Dynamic predication Multipath

IP
C

parser

Perfect Oracle Conf RS = ∞ RS = 256 RS = 32 Base

2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

CI-skip CI-speculate Dynamic predication Multipath

IP
C

perl

Perfect Oracle Conf RS = ∞ RS = 256 RS = 32 Base

40

(a)

(b)

(c)

Figure 14. Branch misprediction tolerance techniques with varying confidence

thresholds (TH) and maximum branch region size (RS) (individual benchmarks).

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

CI-skip CI-speculate Dynamic predication Multipath

IP
C

twolf

Perfect Oracle Conf RS = ∞ RS = 256 RS = 32 Base

3.4

3.5

3.6

3.7

3.8

3.9

4.0

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

CI-skip CI-speculate Dynamic predication Multipath

IP
C

vortex

Perfect Oracle Conf RS = ∞ RS = 256 RS = 32 Base

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

T
H

: 4

T
H

: 8

T
H

: 1
6

T
H

: 3
2

CI-skip CI-speculate Dynamic predication Multipath

IP
C

vpr

Perfect Oracle Conf RS = ∞ RS = 256 RS = 32 Base

41

3.6.2 Performance potential in wider processors

Figure 15 shows the harmonic mean IPC results of six models with varying issue widths

(issue width: 4 to 32). The four modeled branch misprediction tolerance techniques are

shown (CI-skip, CI-speculate, dynamic predication, and multipath), with oracle branch

confidence on the left and real branch confidence on the right. Each branch misprediction

tolerance technique is run using the branch confidence threshold (TH) and the maximum

branch region size (RS) that maximizes its performance (leveraging the results presented in

Section 3.6.1). The figure also shows results for a processor with squash-based misprediction

recovery (Base) and a processor with perfect branch prediction (Perfect).

In Figure 15 (a)-(b), we observe that Perfect achieves significant improvement over

Base. Perfect achieves close to full utilization of the processor bandwidth with low issue

widths (less than 8 issue width). However, as the issue width is increased, Perfect fails to

achieve the full utilization of the machine due to the limited ILP available to the processor’s

window (the window size is 8192 entries as described in Section 2.1.1).

In Figure 15 (a)-(b), we notice that CI-skip continues to outperform all branch

misprediction tolerance techniques when applying oracle confidence. CI-speculate, dynamic

predication, and multipath have similar results across the different issue widths with oracle

confidence. In addition, multipath continues to show improvement potential at issue widths

higher than 24.

When applying real branch confidence to the branch misprediction tolerance techniques,

we observe that CI-speculate outperforms CI-skip, dynamic predication, and multipath.

Although the performance of multipath has fallen with real confidence, it still shows

42

performance potential with increased issue width, allowing it to outperform CI-skip and

dynamic predication.

(a)

(b)

Figure 15. Branch misprediction tolerance techniques with varying issue width.

0

2

4

6

8

10

12

14

16

18
4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

Harmonic mean - excluding mcf

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

0

2

4

6

8

10

12

14

16

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

Harmonic mean - benchmarks with high branch mispredi ction rate

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

43

Figure 16, Figure 17, Figure 18, Figure 19, and Figure 20 present the IPC results for CI-

skip, CI-speculate, dynamic predication, and multipath for the individual benchmarks.

Several trends can be observed:

1) CI-speculate outperforms the other techniques when using real confidence, most of the

time.

2) Multipath’s high branch coverage gives it an advantage with very wide processors. For

example, in bzip, li, and perl, multipath approaches or overcomes CI-speculate.

3) Interestingly, CI-skip, CI-speculate, and dynamic predication outperform Perfect in

vortex with oracle confidence. In addition, CI-speculate outperforms Perfect with real

confidence and an issue width of 32. Vortex has a low branch misprediction rate and

the reason for this advantage is that CI-skip, CI-speculate, and dynamic predication

allow the processor to open up the window quicker than sequential fetch. By taking the

shorter path of a branch region, the advantage of exposing the future instructions

outweighs the penalty of the branch misprediction, in this benchmark.

44

(a)

(b)

(c)

Figure 16. Branch misprediction tolerance techniques with varying issue width

(individual benchmarks).

0
2
4
6
8

10
12
14
16
18
20
22

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

bzip

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

0
2
4
6
8

10
12
14
16
18
20
22

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

compress

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

0

5

10

15

20

25

30

35

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

crafty

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

45

(a)

(b)

(c)

Figure 17. Branch misprediction tolerance techniques with varying issue width

(individual benchmarks).

0
2
4
6
8

10
12
14
16
18
20
22

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

gap

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

0
2
4
6
8

10
12
14
16
18
20

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

gcc

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

0

5

10

15

20

25

30

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

go

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

46

(a)

(b)

(c)

Figure 18. Branch misprediction tolerance techniques with varying issue width

(individual benchmarks).

0

2

4

6

8

10

12

14

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

gzip

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

0

5

10

15

20

25

30

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

ijpeg

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

0

2

4

6

8

10

12

14

16

18

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

li

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

47

(a)

(b)

Figure 19. Branch misprediction tolerance techniques with varying issue width

(individual benchmarks).

0

2

4

6

8

10

12

14

16

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

parser

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

0

5

10

15

20

25

30

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

perl

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

48

(a)

(b)

(c)

Figure 20. Branch misprediction tolerance techniques with varying issue width

(individual benchmarks).

0

5

10

15

20

25

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

twolf

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

0

5

10

15

20

25

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

vortex

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

0

1

2

3

4

5

6

7

8

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

vpr

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

49

Chapter 4

Control independence support mechanisms

Covering a branch with control independence has the advantage of reducing the branch

misprediction penalty. However, to successfully cover a branch, we need to identify its

control independent (CI) instructions accurately. This requires us to accurately know the

branch’s reconvergent point. In addition, we need to be able to detect and track reconvergent

points in the dynamic instruction stream efficiently. Finally, we need an accurate account of

all CIDD instructions influenced by the branch outcome.

To maximize the performance of our system, we need to leverage control independence

on as many branch mispredictions as possible. However, achieving high branch

misprediction coverage is difficult and requires dealing with complex and unstructured

control-flow. For example, some branch mispredictions involve complex control-flow, such

as nested branches and recursive functions, which may lead to incorrect reconvergent points

or the inability to detect the reconvergent points. Therefore, the recruited mechanisms must

be robust: resilient to all control-flow constructs, able to recover from incorrect

reconvergence information, and, meanwhile, flexible enough to adapt to the available

resources and optimize system performance.

4.1 Reconvergent point

A reconvergent point is an instruction that post-dominates a branch. This requirement is

necessary to consistently distinguish between instructions before and after the reconvergent

point. If a post-dominating point is not selected, some control-flow paths in the branch region

50

may miss the reconvergent point. Hence, we cannot leverage control independence on this

branch misprediction because we cannot distinguish the control-dependent from the control-

independent instructions. A branch’s reconvergent point can be generated using a compiler,

simple control-flow heuristics, or a hardware predictor.

4.1.1 Compiler

The compiler needs to provide the reconvergent point of each branch and convey this

information to the processor. For example, gcc’s existing post-dominator analysis can be

used to locate reconvergent points. The generated reconvergent points are conservative since

the compiler considers all possible control-flow paths between the branch and its

reconvergent point, including rarely traversed paths.

Once all the reconvergent points have been identified, a mechanism is required to

convey this information to the processor. One solution is to encode this information into the

original binary. The ISA would provide optional support for the compiler to specify the

immediate reconvergent point of a branch. For 64-bit instruction encodings or variable-length

instruction encodings, it may be feasible to add a pc-relative offset to encode the

reconvergent PC of a branch. Otherwise, a new instruction is needed for conveying

reconvergent PCs and would immediately precede corresponding branch instructions. Both

forms could be supported, an offset for most reconvergent PCs and an instruction for

reconvergent PCs that exceed the offset. Reconvergent PCs do not effect the program’s

function (branches with no reconvergent points would leverage conventional (full) branch

recovery), so branches with reconvergent points that cannot be encoded or branches with

unknown reconvergent points can be safely excluded.

51

4.1.2 Heuristics

A simple approach for generating reconvergent point information is to leverage

imprecise heuristics. Heuristics exploit common control-flow constructs that tend to have

obvious post-dominators. Using heuristics, we can avoid using the compiler and modifying

the binary to pass the reconvergent point information to the processor. In essence, heuristics

sacrifice branch misprediction coverage for simplicity and the ability to cover programs

without the need for recompiling them.

� Return heuristic: Functions tend to isolate all control-flow within them except in

extraordinary circumstances such as long-jump instructions and exit conditions.

Hence, the return heuristic builds on the fact that a return of a function tends to be a

post-dominator for all instructions within the function and can act as a valid

reconvergent point (Rotenberg, et al., 1999).

� Loop heuristic: In structured code, the loop exit tends to be a post-dominating point

for all instructions within the body of the loop. The loop exit is often identified by a

backward branch. The loop heuristic is not precise, as some backward branches may

not correspond to loop exits (Rotenberg, et al., 1999).

� Hammock heuristic: By observing the if-then construct in structured code, we notice

that the branch’s target points to a post-dominating point for all instructions in the if-

then construct body. Hence, the branch’s target can be used as the branch’s

reconvergent point (Gandhi, et al., 2004) (Rotenberg, et al., 1999).

52

4.1.3 Dynamic reconvergence predictor

The dynamic reconvergence predictor proposed by Collins et al. (Collins, et al., 2004)

can also be leveraged for providing the reconvergence information needed for control

independence. The hardware reconvergence predictor combines the advantages of both the

compiler approach and the heuristic approach. It is able to achieve high branch misprediction

coverage while avoiding the need to recompile the targeted programs. The reconvergence

predictor categorizes branches into four categories based on the location of the reconvergent

point with respect to the branch and the control-flow leading to it (Collins, et al., 2004).

� Reconverge below max: This category includes branches with their reconvergent

points below them. This is the most common type of branch category. Instructions

below the reconvergent point and at the same call depth can never be fetched between

the branch and its reconvergent point. An example of a branch in this category is a

simple forward hammock with no embedded branches or the backward branch in a

“for loop”.

� Reconverge above max: Branches with their reconvergent points above them are

considered within this category. Instructions between the reconvergent point and the

branch in the same call depth can only be fetched after the reconvergent point.

� Rebound reconverge: Branches that have their reconvergent points below them but

are not part of the reconverge below max category are part of this category. These

branches were not part of the reconverge below max category because some

instructions from below the reconvergent point are fetched between the branch and its

reconvergent point. This can occur because of some control-flow after the branch that

53

pass the reconvergent point and then branch backward to the reconvergent point. This

situation is commonly associated with switch-case construct.

� Return reconverge: Branches in this category reach one or more return points (with

the same call depth) before reaching a common reconvergent point.

The reconvergence predictor continuously monitors the retired instruction stream and

tries to detect changes to the current reconvergent points. The predictor can monitor a limited

number of branches at any given time. These active branches are located in the Active

Reconvergence Table (ART). Each monitored branch can potentially fall within any of the

four branch categories; hence, the predictor maintains four reconvergent points for each

branch. When the reconvergent point for a given category is seen, that category is

deactivated. If a retired PC violates the assumptions of an active category, we update its

reconvergent PC with the newly retired instruction’s PC. For example, in the reconverge

below max category, if we see a PC below the reconvergent point and with the same call

depth before reconverging, we detect that the old reconvergent point is incorrect and we

update our entry with the new reconvergent point. When all categories are inactive, the

branch leaves the ART and updates the Reconvergence Prediction Table (RPT). The RPT is

indexed by the branch’s PC. If a branch hits in the RPT, the most likely reconvergent point is

selected from the four reconvergence categories.

In this thesis, the predictor is augmented to provide additional information. Confidence

counters separate accurate from inaccurate predictions. The confidence counter of a given

branch is incremented whenever an instance of the branch and its reconvergent point retires

without causing a change to the predictor’s state. If the retired reconvergent point invalidates

54

the previously stored reconvergent points then we update the entry and reset the confidence

counter. In addition, for each branch, the predictor keeps track of the maximum path length

through the branch’s control-dependent (CD) region, among paths that were traversed. This

information is useful for guiding when to apply control independence. We select a maximum

CD path length above which it is not worthwhile to exploit control independence due to the

sheer number of incorrect control-dependent instructions.

4.1.4 Performance impact of reconvergent point selection

The distance of the reconvergent point from its branch affects the performance potential

of control independence. The closer the reconvergent point is to the branch, the less work

that is squashed and wasted (incorrect CD instructions) when a branch misprediction occurs

and the more the potential for saving CIDI instructions.

True reconvergent points, which are valid on all control-flow paths, may not yield the

highest performance. By identifying that some control-flow paths are infrequently traversed,

speculative reconvergent points emerge with higher performance potential. For example,

Figure 21 shows a branch with two possible control-flow paths. However, the right path

encompasses a branch that transfers control outside the main branch’s two paths. Hence, the

true reconvergent point is located at the target of the infrequent control-flow path. This

control-flow construct is common in branches that contain early loop exits and in error

checking code where the branch ends the program if an error condition occurs.

If we ignore the infrequent control-flow path, the speculative reconvergent point is

located at the intersection of the main branch’s two control-flow paths, which is much closer

to the branch. However, in the case we traverse the infrequent control-flow path, we can no

55

longer take advantage of control-independence to reduce the penalty of the misprediction on

the main branch and must revert to squash-based branch misprediction recovery. The tradeoff

between selecting speculative versus true reconvergent points must be balanced to achieve

the highest performance gains.

Moreover, considering CI-skip as a possible sequencing model changes tradeoffs with

respect to reconvergent point selection. With CI-skip, we no longer have to worry about

wasted work done on CD instructions. The CD path is delayed until the branch resolves.

However, the effect of reconvergent point selection on performance depends mainly on the

quality of the CI region. A CI region with a high fraction of CIDI instructions is desirable.

Since the number of CIDI instructions depends on the nature of the data dependencies and

how much of them are influenced by the productions in the branch’s CD region, it is difficult

to evaluate if selecting a given reconvergent point over another is beneficial. Quantifying this

tradeoff is involved and optimizing performance requires finding points where the number of

CIDI instructions is maximized.

Figure 21. Example of true vs. speculative reconvergent points.

Additional CI
instructions

Speculative
reconvergent point

True
reconvergent point

Infrequent
control-flow path

56

4.2 Control-Flow Stack (CFS)

The previous section discussed ways to associate a reconvergent point with each branch.

Using this information, we need a mechanism to detect when a branch has reconverged,

during instruction fetch. Detecting reconvergence of multiple concurrent and nested branches

is a challenge that needs to be addressed efficiently to achieve high branch coverage with the

nearest reconvergent point (highest performing).

The control-flow stack (CFS) is a hardware mechanism, which enables robust and

accurate detection of reconvergent points in the fetch stream.

4.2.1 Single branch

We will address how reconvergence is detected for the simplest control-flow construct, a

single branch that does not encompass any branches or calls.

To detect the reconvergence of a single branch, a stack with depth one is sufficient.

When a branch is dispatched, its reconvergent PC is pushed onto the CFS top-of-stack. The

reconvergent point in the dynamic instruction stream is detected by comparing the PCs of

newly dispatched instructions to the reconvergent PC at the top-of-stack. If there is a match,

then the branch corresponding to the current top-of-stack has reconverged and we pop the

top-of-stack entry. This frees the stack to be used by other branches and marks the beginning

of the control-independent instructions. However, if the branch corresponding to the top-of-

stack completes before reconvergence is detected, then detecting reconvergence is no longer

necessary and we can pop the top-of-stack for future branches to utilize it.

Therefore, the CFS top-of-stack can be freed using either of two criteria:

1) Popping the top-of-stack when reconvergence is detected.

57

2) Popping the top-of-stack when the corresponding branch completes.

4.2.2 Nested branches

To support multiple nested branches concurrently, the mechanism employs a multiple-

entry stack. When we see a new branch, we push its reconvergent PC on to the stack making

it the new top-of-stack. Assuming correct reconvergent points, we are assured to see the

reconvergent PC in the top-of-stack entry before any reconvergent PCs in other stack entries.

This is true because all reconvergent points are, by definition, immediate post-dominating

points. Like in the single branch scenario, the top-of-stack is popped when its reconvergent

PC is detected. This exposes the next stack entry as the new top-of-stack and its reconvergent

PC as the new monitoring candidate.

Branches that execute before reconverging no longer need their stack entries. Unlike the

single branch scenario, the stack entry being removed may not always be located at the top of

the stack. Removing stack entries in the middle of the stack may violate normal stack

semantics that only support pushing and popping. To address this problem, two

implementations are possible:

1) The first solution delays removing entries from the middle of the stack until popping

is possible. When a branch completes, its corresponding stack entry is marked as

invalid. If an invalid entry becomes the top-of-stack or the bottom-of-stack, the

invalid entry is removed using normal popping. This solution maintains the simple

semantics of the stack at the expense of delaying the freeing of stack entries. There is

no extra cost associated with popping multiple entries at either end of the stack,

58

because this simply involves moving the head or tail pointer to the next active entry

in the stack.

2) If immediate stack entry removal is desired, a stack implementation that can collapse

away entries is necessary. This implementation is more complex but yields higher

utilization of the stack. Invalid entries need not occupy stack entries for a long time.

The size of the stack dictates the number of nested branches (case 1 above) or nested

unresolved branches (case 2 above) that can be monitored concurrently. If the stack is full,

we no longer can detect reconvergence for new branches. Branches with no stack entry are

forced to “give up” their reconvergent points. However, branches with no stack entry can

inherit the reconvergent point of the closest encompassing branch, located on the top-of-

stack. This is correct because the reconvergent points of encompassing branches satisfy the

criteria of being post-dominators for inner branches. Reconvergent point sharing is discussed

in the more detail in the next section.

4.2.3 Reconvergent point sharing and CFS merging

When a branch is dispatched, we normally push its reconvergent point on the CFS.

However, some branches may not have reconvergent points. This can occur either because

the compiler or reconvergence predictor failed to provide a valid reconvergent point, or

because the branch was forced to give up its reconvergent point because the CFS is full.

These branches can still benefit from control-independence by inheriting the encompassing

branch’s reconvergent point. The closest active (unresolved) encompassing branch can be

found on the CFS top-of-stack. The branch simply inherits the encompassing branch’s

59

reconvergent point. In addition, some branches may find that the CFS top-of-stack already

has the same reconvergent point, anyway.

Some branches may have the same static reconvergent point. Programming constructs

such as the “switch” statement contains many branches that converge at the end of the switch

statement. More generally, branches may share dynamic reconvergent points. There are many

cases in which multiple dynamic branches share the same reconvergent point. A common

example is the multiple instances of the backward branch of a loop where they all have the

loop exit as a reconvergent point. Fortunately, the CFS can easily detect cases in which

multiple branches have the same dynamic reconvergent point.

If the newly dispatched branch does not have a reconvergent point, or if its reconvergent

PC matches the reconvergent PC at the CFS top-of-stack, or if the CFS is full, then the new

branch and the branch corresponding to the CFS top-of-stack will share the reconvergent

point of the CFS top-of-stack. In this case, the new branch does not push a new entry onto the

CFS, implicitly “merging” with the CFS top-of-stack. Hence, merged branches share the

same stack entry. When the reconvergent point corresponding to the top-of-stack is

dispatched, we pop the top-of-stack and detect reconvergence for all merged branches at

once.

If all merged branches complete before detecting their shared reconvergent point, then

the shared CFS entry can be freed. The CFS accomplishes this by maintaining a branch

merge counter for each CFS entry. When a newly fetched branch merges with the CFS top-

of-stack, the branch merge counter for that entry is incremented. When a branch completes,

the corresponding branch merge counter is decremented (assuming the reconvergent point

60

has not been detected yet). If the branch merge counter reaches zero before detecting the

reconvergent point, then the CFS entry can be freed.

4.2.4 Recursion

Correct functioning of the CFS is based on the fact that, when trying to detect

reconvergence of a specific branch, the first occurrence of its reconvergent PC is the correct

reconvergent point that post-dominates the branch. However, due to recursion, the CFS may

encounter a reconvergent PC that matches the top-of-stack mistakenly. This reconvergent PC

is actually a different dynamic instance of the reconvergent PC that does not post-dominate

the initiating branch.

Figure 22. Function “foo” recursively called.

To illustrate this problem, Figure 22 shows a dynamic sequence of instructions where

function “foo” is called recursively. Instructions are shown with their PCs. The reconvergent

point of the branch at PC 10 is located at PC 30. If we follow the instruction sequence in the

Foo():

 20: Call Foo()

40: Return

10: Br

30: Reconv

Foo’():

40': Return

10': Br

30': Reconv

61

example initially assuming an empty CFS, the branch “10: Br” will push the reconvergent PC

30 onto the stack. Next, we will encounter the call instruction which will take us to a new

instance of the “foo” function labeled “foo’”. The branch “10’: Br” will try to push its

reconvergent PC onto the CFS, only to merge since it also has 30 as its reconvergent PC.

This is not a problem itself, since the reconvergent PC of the first branch post-dominates the

second branch. Next, we encounter instruction “30’: Reconv” and are forced to pop the stack

prematurely since 30 matches the CFS top-of-stack. However, this reconvergent point does

not satisfy the criterion of being a post-dominator of the outer branch “10: Br” and hence is

an incorrect reconvergent point.

If instruction “10: Br” happens to be a branch misprediction, the incorrect reconvergent

point may cause us to corrupt program state during recovery. As we discard the incorrect CD

path, some incorrect instructions will persist by mistake. Instructions between PC 30’ (the

perceived reconvergent PC) and PC 30 should have been discarded. However, because of

premature reconvergence, these instructions remain, causing incorrect program behavior.

To address this problem, we make the reconvergence test definitive by tracking call

depth in the dispatch stage and including call depths in CFS entries. In other words, if the

new branch’s reconvergent PC and call depth match the CFS top-of-stack, then the branches

have the same dynamic reconvergent point. Otherwise, these reconvergent points are

different although they share the same PC. Therefore, the reconvergent point is defined by

both the reconvergent PC and the call depth of the reconvergent instruction. This

distinguishes the two reconvergent PCs and, hence, prevents premature reconvergence. From

the previous example, PC 30 will not match PC 30’ because of the difference in call depth.

62

4.2.5 CFS violation detection and recovery

As a consequence of using heuristics or dynamic hardware predictors to predict

reconvergent points, an incorrect reconvergent point may be predicted. An incorrect

reconvergent point does not post-dominate the branch it belongs to; hence, this branch cannot

be covered by control independence. The incorrect reconvergent point also affects all

encompassing branches (lower stack entries), by preventing them from detecting their

reconvergent points. This is a consequence of the incorrect reconvergent point tying up its

CFS entry until its branch resolves. This degrades performance, as we lose opportunity to

employ control independence on the branch with the incorrect reconvergent point and for the

encompassing branches below it in the CFS.

It is crucial to detect incorrect reconvergent points promptly to minimize their negative

performance effects. There are three symptoms of incorrect reconvergent points that can be

used to identify them.

1) Leaving branch frame: By comparing the CFS top-of-stack call depth with the

currently dispatched instruction’s call depth, we can detect when we leave the frame of

the reconvergent point. This is detected when a call depth lower than that of the CFS

top-of-stack has been encountered. Since we define a reconvergent point to be the pair

of PC and call depth, then a reconvergent point must be in the same function (frame) as

that of the branch. Otherwise, the call depth portion of the reconvergent point will

never be satisfied (except in another instance of the function, which is wrong). Since

there is no chance to detect the reconvergent point at this time, it fails the branch post-

63

dominating test. So, the concerned CFS entry must contain an incorrect reconvergent

point.

2) Encompassing branch reconvergence: If an encompassing branch detects its

reconvergent point before the CFS top-of-stack branch does, then this implies that the

CFS top-of-stack contains either an incorrect reconvergent point or sub-optimal

reconvergent point. In either case, it is far more valuable to use the encompassing

branch’s reconvergent point instead. To detect this scenario, the CFS needs to be

modified. Instead of only comparing the CFS top-of-stack to newly dispatched

instructions for a match, we need to compare all CFS entries in parallel. This is

feasible for CFSs with relatively few entries, but may have power implications if the

number of entries is large. Fortunately, the CFS size is a function of the maximum

number of unresolved nested branches covered by control independence (which tends

to be small for most benchmarks).

3) Exceeding region size: Leveraging the provided maximum region size of a branch

region, we can detect anomalies. One possible reason for exceeding the maximum

region size is having an incorrect reconvergent point. Although this test does not

conclusively say that a reconvergent point is incorrect, it does give a strong indication

of problem. To implement this check, we would need to add a counter to each CFS

entry. Incrementing is done when instructions dispatch. When any counter exceeds the

maximum region size, we can flag a possible incorrect reconvergent point.

If the violation is detected on the first pass before servicing a branch misprediction, then

we can repair the CFS. Two repair policies are possible. First, we could flush the whole

64

stack, forcing all branches on the stack to use squash-based branch recovery (since no

reconvergence will be detected). The second approach is higher performing and attempts to

merge the violating entries with the next available non-violating entry in the hope that that

entry will reconverge correctly and some control independence benefit will be preserved. If

no entries are available to merge with, then the violating entry is removed and conventional

(full) recovery is used for the concerned branch.

If the violation is detected during branch misprediction recovery, then we must forego

selective recovery and fall back to conventional (full) recovery (simply do not reconverge

and discard all CI instructions).

4.2.6 Additional CFS functions

The CFS is an essential mechanism for control independence that enables us to cope

with complex control-flow constructs simply. The usefulness of the CFS can go beyond its

main function of detecting reconvergent points. The CFS can also be used to propagate

control dependence vectors if desired. The control dependence vector identifies all branches

that an instruction depends on from a control-flow standpoint. These vectors are computed by

setting all the bits corresponding to branches currently on the stack. The control dependence

vectors are useful in some control independence implementations that require selective

squashing of the CD instructions (note that TCI does not require this). When the CD

instructions of a given branch need to be squashed, the bit corresponding to the branch is

asserted and instructions that have that bit set in their vectors are squashed.

Additionally, the CFS can detect looping behavior in general through its merging ability.

When branches merge their reconvergent points on the CFS, this is a sign of a possible loop.

65

The loop count can be estimated by the number of reconvergent point merges divided by the

number of unique branch PCs being merged. One advantage of the CFS over using heuristics

to detect loops (backward branches) is that it can detect looping behavior even in the absence

of a traditional looping construct.

Finally, the CFS can be used as a method to optimize the global history of the branch

predictor. By observing that encompassing branches’ outcomes do not change between the

different dynamic instances for a given control-dependent branch, we can exclude their

history bits from the global history, allowing for longer history lengths. The reasoning for

this phenomenon is that, for the concerned branch to be fetched, encompassing branches

have to take a given control-flow direction, which is constant. Therefore, the encompassing

branches do not add any information toward the outcome of the predicted branch. One

concern needs to be addressed for loops that contain no internal branches, while using this

optimization; in this case, the loop branch would not see any history bits from previous loop

iterations. This can possibly degrade branch prediction accuracy as the predictor would not

be able to identify the loop exit. Note that using the CFS to optimize global history was

proposed by my colleague, Vimal Reddy.

4.3 Identifying CIDD instructions

Identifying the reconvergent point enables us to mark the beginning of the control-

independent (CI) instructions. Furthermore, we need to be able to distinguish between

control-independent data-independent (CIDI) and control-independent data-dependent

(CIDD) instructions. CIDD instructions are influenced by the outcome of the branch, as their

outcomes may change depending on the control-flow path traversed. This indirect

66

dependence on the branch is caused either by register data dependencies or memory data

dependencies.

4.3.1 Register dependencies (Influenced Register Set (IRS))

In an out-of-order superscalar processor, there are potentially many versions of a given

architectural register at any given time. Instructions have to execute with the correct physical

register mapping (source names) to ensure correct program execution. In conventional

processors, in-order register renaming ensures that instructions always get the newest

physical register mappings in the rename map.

Control independence violates in-order register renaming by preserving CI instructions

when a branch misprediction is detected. Hence, the CI instructions are renamed before the

correct CD instructions are fetched, making some of their source names potentially stale.

Physical register mappings are altered during branch misprediction recovery because of

either squashing the incorrect CD path of the branch, which could remove some register

productions, or fetching the correct CD path of the branch, which may introduce new register

productions. Hence, CI instructions must be repaired to ensure correct program behavior.

CI instructions can be broken down into two groups, CIDI and CIDD instructions. CIDI

instructions are not affected by changes in register mappings at all. Their source names stay

the same. On the other hand, CIDD instructions have one or more of their source names

change during branch misprediction recovery. In addition, instructions dependent on these

root CIDD instructions directly or indirectly are also considered CIDD instructions.

Since the cause of register mapping changes for root CIDD instructions is the insertion

or removal of register productions in the CD region of the branch, we must identify register

67

productions on all traversed control-flow paths in the CD region. This collection of register

productions is called the Influenced Register Set (IRS). Each bit in the IRS corresponds to a

single architectural register. Hence, the size of the IRS is bounded by the number of

architectural registers specified by the ISA. For example, if the bit corresponding to R5 is set,

then any CI instruction consuming a version of R5 from before the reconvergent point,

directly or indirectly through a chain of CIDD instructions, is considered CIDD. With the

help of the IRS, we have the information necessary to identify CIDD instructions allowing us

the opportunity to service them.

The IRS can be easily generated by a compiler or a hardware predictor.

4.3.1.1 Generating the IRS using a compiler

The compiler would collect all register productions between the branch and its

reconvergent point statically using basic data-flow analysis. This information is then

conveyed to the processor with a new ISA instruction. For example, in the PISA ISA, a new

64-bit instruction specifies the IRS. PISA has 31 integer (excluding register 0), 16 double-

precision floating-point, and 3 other (HI, LO, FCC) logical registers. 16 bits are used for the

floating-point registers. If any of these are set, FCC is implied to be in the IRS. 1 bit is used

for both the HI and LO register. Thus, 48 bits encode the IRS. The IRS instruction is inserted

before each branch whose reconvergent PC is specified.

4.3.1.2 Generating the IRS using the reconvergence predictor

Using a hardware predictor to predict the IRS is also feasible. The IRS is highly

predictable given a predictable reconvergent point. A learning mechanism is added to the

dynamic reconvergence predictor to collect a branch’s IRS. As the predictor monitors retired

68

instructions for reconvergence, it accumulates logical registers being written to after the

branch but before reconvergence is detected. Influenced registers are also accumulated across

all seen retired paths. This provides a way to identify all productions for a given branch’s

control-dependent region. The IRS must be accurate. The use of confidence ensures

repetition, so that enough different paths are traversed through a branch’s CD region to yield

a representative IRS.

4.3.1.3 Performance impact of IRS

The performance gain of covering a branch misprediction with control-independence is

directly related to the number of CIDI instructions preserved. A high percentage of CIDI

instructions in the CI region is desirable and would leave few CIDD instructions needing

recovery, improving performance. The number of registers set in the IRS affects the number

of CIDD instructions in the CI region.

If all bits in the IRS are set, then all instructions in the CI region would be CIDD

instructions and we would have to repair the whole CI region. This is tantamount to

conventional (full) branch misprediction recovery. On the other hand, if none of the bits in

the IRS are set, then all instructions are CIDI instructions (except for violating loads and their

dependents) and the CI region need not be repaired. The number of CIDD instructions is also

affected by which registers are set in the IRS and what is the nature of the data dependencies

in the targeted CI region. For example, if the stack pointer register (R29 in PISA) is set in the

IRS, then the number of CIDD instructions can be large. This is the case because stack

pointer arithmetic forms a long serial dependence chain and because the address calculations

for many stack loads and stores depend on it.

69

Therefore, a sparse, optimized IRS is favorable. If we use an overly conservative IRS,

the number of perceived CIDD instructions will increase and the number of CIDI instructions

will decrease, which will reduce the advantage we have over conventional (full) branch

recovery. On the other hand, if we use an overly optimistic IRS, there may be many

violations (Section 4.3.1.5) causing frequent downgrades to conventional recovery.

Ideally, the IRS would be sparse without leading to lost coverage. The optimal/actual

IRS would only contain register productions on the incorrect control-flow path of the

mispredicted branch and register productions on the repaired correct control-flow path. The

actual IRS is completely known only after recovering from a branch misprediction at the

point of reconvergence. At that point, the processor has examined both the correct CD

instructions and incorrect CD instructions. If the IRS is required before recovering from a

branch misprediction, then we must rely on a speculative IRS provided by the compiler or the

reconvergence predictor. The compiler and the reconvergence predictor can achieve the

optimal/actual IRS in some situations where the targeted branch only has two possible paths

from the branch to its reconvergent point. However, when branches have more than two

control-flow paths leading to the reconvergent point, conservative IRSs will be produced.

Regions with multiple control-flow paths occur because of branches with multiple targets

such as jump indirect instructions (JALR and JR) or because of internal control-flow

(branches, loops, etc.) that increases the number of unique paths from the branch to its

reconvergent point.

70

4.3.1.4 Optimizing the IRS

Due to the limited number of architectural registers, the compiler, during the register

allocation phase, is forced to spill registers onto the stack. Spilling to the stack is also used to

deal with function calls to avoid caller/callee register conflicts. The compiler has set

conventions on how to handle saving registers to allow for correctness across function calls.

Caller-saved registers are registers that are saved if the calling function is using these

registers and they are its responsibility. Callee-saved registers are registers that the caller

assumes will be intact after returning from the called function and can assume their

correctness. This pact is guaranteed by the callee function.

Based on the observation that there is typically no net change in callee-saved registers

before and after a subroutine, we can optimize the IRS generation criteria to reduce the

number of registers set in it. Instead of collecting all register productions between a branch

and its reconvergent point, the optimized IRS would only collect register productions in its

call depth level between the branch and its reconvergent point (function calls would set their

return registers in the IRS). Hence, any productions observed in internal functions (higher

call depths) are omitted from the optimized IRS. The optimized IRS is not inherently safe, as

some CI instructions may receive the mapping of one of the omitted register productions

leading to lost coverage as some CIDD instructions are considered CIDI. To make the

optimized IRS safe, we need to isolate the effect of the omitted registers by short-circuiting

their mappings with their corresponding mappings from before the branch. This is guaranteed

to be correct because the callee function preserves the value of these registers by saving and

restoring them. Leveraging the control-flow stack, the branch would checkpoint any register

71

mapping not in the optimized IRS. If the branch resolves before reconverging, then the CFS

entry will be freed and the IRS is not needed. On the other hand, if the reconvergent point is

reached first, then the top of the CFS loads the saved register mappings into the rename map.

This allows the CI instructions to short-circuit the omitted IRS productions safely.

4.3.1.5 IRS violation detection and recovery

The compiler or reconvergence predictor provided IRS may not match the optimal/actual

IRS. It can be either too conservative or overly optimistic. If the IRS has additional bits set, it

is conservative. In this case, control independence will function correctly, but at an

opportunity cost of identifying some CIDI instructions as CIDD. However, if the IRS is too

optimistic, then some CIDD instructions needing repair after a branch misprediction will be

neglected (they are incorrectly classified as CIDI). This prevents control independence from

successfully repairing a branch misprediction. Fortunately, an inadequate IRS can be

detected, by comparing the actual IRS (observed by the processor) to the predicted IRS.

The actual IRS is composed of register productions by incorrect and correct CD

instructions. After fetching the incorrect CD instructions and detecting the reconvergent

point, the predicted IRS is augmented by the actual IRS registers observed thus far. Since no

CI instructions have been fetched yet, this allows us to repair the predicted IRS preventing

future IRS violations. Later, when a branch misprediction is detected, recovery includes

fetching the correct CD instructions until the reconvergent point is reached again. At this

point, the actual IRS is compared with amended predicted IRS. If the actual IRS contains

registers not present in the amended predicted IRS, then this is a true IRS violation. To

72

recover from an IRS violation, we are forced to fall back to conventional (full) branch

misprediction recovery, discarding all CI instructions.

4.3.2 Memory dependencies (load poisoning)

We have seen how a branch misprediction can affect CI instructions indirectly through

register dependencies. This effect on CI instructions is further extended through memory

dependencies. Specifically, CI load instructions may be affected by CD store instructions.

For a load to execute correctly, it must receive the most recent value of the memory address

it is loading. A branch misprediction can introduce false store instructions on the incorrect

CD path, or delay correct store instructions on the correct CD path, which can influence a CI

load’s result. Load instructions that are influenced by stores in a given branch region are

considered CIDD with respect to that branch. During selective branch misprediction

recovery, CIDD loads must be re-executed, like other CIDD instructions. For control

independence to be leveraged, it is necessary that CIDD load instructions produce correct

results; otherwise, we will lose control independence coverage and need to fall back to

conventional (full) recovery. Hence, identifying CIDD loads through accurate memory

dependence prediction is crucial for good performance.

Unlike register data dependencies, which are bounded by the number of architectural

registers and can be compactly represented and easily predicted, memory dependencies are

more dynamic. Fortunately, memory dependencies are somewhat stable (although not as

stable as register dependencies) and relationships between loads and stores can be accurately

predicted. Traditional memory dependence predictors, such as store-sets (Chrysos, et al.,

73

1998), have been successful in providing accurate results in the context of aggressive load

speculation in superscalar processors.

4.3.2.1 Store/branch set predictor

Traditionally, the store-set predictor can only deal with stores currently in the window.

However, in the context of control independence architectures, fetching of stores may be

delayed until a branch misprediction is serviced. In a control independence architecture with

unresolved branch mispredictions, the store-set predictor may decide mistakenly that a given

load is not CIDD and allow it to execute as such. This is wrong, because selectively

recovering a branch misprediction may introduce some new stores that were not available in

the window when the store-set predictor made its prediction. To overcome this problem, the

store-set predictor needs to be modified, making it aware of potential stores introduced late,

during selective branch misprediction recovery.

Branch mispredictions covered by control independence introduce holes into the

instruction stream. A CI load accessing the store-set predictor before all prior branch

mispredictions have been resolved, will not observe the complete instruction stream, leading

to an incorrect memory dependence prediction. This situation can be identified through the

branches themselves. A low-confidence branch and its CD region represent a possible hole in

the instruction stream, where store instructions may be removed or inserted. Therefore, low-

confidence branches act like proxies for stores that may be removed or inserted due to

control-flow changes.

In addition to the normal store-to-load memory dependency (store set) tracked by

memory dependence predictors, the modified predictor will need to track dependencies

74

between low-confidence branches and loads (branch set). The store/branch set predictor now

has the capability to detect possible holes in the instruction stream (that typically influence a

given load) and delay the final execution of influenced loads until the low-confidence

branches have been resolved.

The CD region, a possible hole in the instruction stream, can be identified by either the

branch or its reconvergent point. In the store/branch set predictor, using the reconvergent PC

is more beneficial than using the branch PC for three reasons:

1) The reconvergent point can represent multiple branches (CFS merging). This reduces

the number of points needed to be tracked by the predictor.

2) The reconvergent point is located at the point of separation between the CD

instructions and CI instructions. When CI loads access the memory dependence

predictor, the reconvergent point will act as a barrier between the possibly incorrect

CD instructions and correct CI instructions.

3) If a branch misprediction is being serviced, the branch may retire before servicing is

completed. By using the reconvergent point, we prevent the load from accessing the

partially repaired CD region.

4.3.2.2 Load violation detection and recovery

As a consequence of load speculation, load violations may occur. In the context of

conventional superscalar processors with conventional (full) branch misprediction recovery,

load violations are detected by broadcasting the addresses of stores as they execute to

younger loads. If a younger load received its value from a store older than the broadcasting

75

store or from the cache, and its address matches the broadcasted store address, then a load

violation is detected.

In the context of selective branch misprediction recovery, load violation detection needs

to also address the possibility of store instruction removal and re-execution. So, in addition to

broadcasting new store addresses to younger loads, we also need to broadcast removed store

addresses to younger loads. In control independence architectures, store instructions can

cause load violations by inserting a new address, removing an old address, or changing an

address. Here is a list of the events causing load violations and the actions required to detect

the violations:

1) Out-of-order execution of a store instruction or late insertion of correct CD store

instruction: broadcast new address.

2) Removing a CD store instruction: broadcast old address.

3) Re-executing a store instruction: If the address changes, then broadcast both old and

new addresses. If only the value changes, then just rebroadcast the old address.

Once a load violation has been detected, recovery is required to achieve correct program

behavior. Recovery can be done by either redoing all the work after the load violation, or

attempting to selectively repair it. In control independence architectures, the number of load

violations can increase significantly, due to the holes in the dynamic instruction stream, when

compared to processors implementing conventional (full) branch misprediction recovery.

Fortunately, the store/branch set predictor can identify CIDD loads accurately, which reduces

the number of load violations introduced by the holes in the dynamic instruction stream.

76

Therefore, redoing all work after a load violation may be a viable alternative with an accurate

store/branch set predictor.

77

Chapter 5

Control independence: Analysis of implementation aspects

and performance factors

Control independence architectures need to accomplish two tasks to recover from a

branch misprediction successfully. First, they must repair the CD region of the mispredicted

branch. This involves discarding incorrect instructions on the mispredicted control-flow path

and replacing them with the correct instructions from the branch’s actual control-flow path.

Second, they must repair the CI region of the mispredicted branch. The CI region is

composed of CIDI and CIDD instructions. CIDI instructions are correct and need not be

repaired. CIDD instructions indirectly depend on the branch outcome through data

dependencies and need to be repaired by correcting their source values and then re-executing

them.

This chapter analyzes implementation aspects and performance factors of repairing the

CD region (Section 5.1) and the CI region (Section 5.2).

5.1 Repairing the CD region

To implement control independence, the processor must be able to repair the CD region.

This involves two steps. The first step is to discard the incorrect CD instructions from the

middle of the window. This entails reclaiming the resources they hold and making them

available to future instructions. The second step is to fetch the correct CD instructions and

insert them into the middle of the window. This requires allocating the newly fetched

78

instructions resources, so they can execute. These two steps are not fully supported by

traditional superscalar processors.

Instructions can hold many types of resources that include: reorder buffer (ROB) entries,

load/store queue (LSQ) entries, issue queue (IQ) entries, branch checkpoints, and physical

registers. Traditional processors manage (allocate and reclaim) these resources in different

ways, some compatible with control independence while others are not. These resources can

be grouped based on the way they are managed, into unordered resources and ordered

resources.

5.1.1 Unordered resources

Unordered resources do not maintain order between allocated entries. Entries can be

allocated in any order and reclaimed in any order. Processors use unordered resources when

the order between allocated entries does not have to obey a specific order and when entries

must be allocated and/or reclaimed out-of-order. The flexible nature of unordered resources

makes them compatible with control independence’s requirement to insert instructions

(allocate resources) in the middle of the window and remove instructions (reclaim resources)

from the middle of the window. In addition, unordered resources’ ability to reclaim

resources quickly, out of program order, makes them suitable to use with performance-

critical resources. Branch checkpoints and issue queue entries are examples of performance-

critical unordered resources.

In traditional superscalar processors, instructions get allocated IQ entries at the dispatch

stage in program order. The IQ entries are reclaimed out-of-order when their instructions

issue. When a processor detects a branch misprediction, some speculative instructions need

79

to be discarded and their resources freed. IQ entries can be reclaimed from misspeculated

instructions in two ways:

1) Wait for the misspeculated instructions to issue as normal and free their IQ entries.

2) Identify the misspeculated instructions in the IQ and free their entries. This can be

accomplished by walking the ROB and using the IQ entry numbers stored in it, or by

using control dependence vectors to free the IQ entries in bulk (Section 4.2.6).

Branch checkpoints are allocated to branches to recover from possible mispredictions.

Each branch receives a checkpoint at the dispatch stage in program order. When a branch

executes (out-of-order) and a misprediction is not detected, the branch can safely free its

checkpoint. Branch checkpoints are performance-critical resources and should be freed as

soon as possible. This mechanism stays the same with control independence and no

modifications are needed.

5.1.2 Ordered resources

Ordered resources maintain a specific order between allocated entries. Entries usually

can only be allocated and reclaimed at either end of the ordered list. Processors use ordered

resources when program order needs to be maintained between the allocated entries, for

correct functionality and/or performance. An additional advantage of an ordered resource is

its ability to efficiently allocate and reclaim contiguous resources in bulk at either end of the

ordered list. The strict order required by ordered resources makes them incompatible with

control independence’s requirement to insert instructions (allocate resources) in the middle of

the window and remove instructions (reclaim resources) from the middle of the window. The

ROB, LSQ, and RF are examples of ordered resources.

80

The ROB requires its entries to be ordered so that it can retire instructions in the correct

program order. The LSQ requires order to correctly enforce memory data dependencies

between stores and loads in the window. The LSQ also requires order to commit stores in

program order to the cache.

The ROB and load/store queues are circular FIFO structures. Instructions are allocated

entries at the end of the FIFOs by incrementing the tail pointers. Entries are reclaimed in two

ways, depending on if the instructions are correct or misspeculated. Correct instructions free

their entries at retirement by incrementing the head pointer. Misspeculated instructions

logically after a mispredicted branch free their entries in bulk by moving the tail pointer to

the mispredicted branch’s entry. Notice that allocation and reclamation happen at the head

and tail of the FIFOs. FIFOs do not support arbitrary insertion and removal from the middle,

which makes these resources incompatible with control independence in their current form.

To make the ROB and LSQ compatible with control independence, modifications need

to be adopted to enable insertion and removal in the middle of the window. Four possible

solutions can be adopted:

1) Collapsing/expanding buffer: By replacing the simple FIFO with a

collapsing/expanding buffer, we can insert and remove instructions in the middle of

the FIFO. The incorrect CD instructions are removed (collapsed away) by shifting the

CI instructions in their place. Inserting the correct CD instructions requires expanding

the buffer in the middle, between the branch and its CI instructions, to make space for

the new instructions. The collapsing/expanding buffer is complex and power hungry.

This implementation may also degrade performance by delaying servicing of a branch

81

misprediction. The buffer cannot collapse/expand entries in bulk and may need many

cycles to complete the needed shifting of instructions. This delay increases the branch

misprediction penalty.

2) Linked-list: The ROB and the load/store queues can be managed as linked-lists of

instructions, segments, or processing elements (Rotenberg, et al., 1999), instead of a

circular FIFO, at the cost of extra complexity. This implementation is compatible

with arbitrary insertion and removal of entries, making it a good match for control

independence. However, a problem with linked-list implementations of the ROB and

LSQ is the difficulty in sequencing, allocating, and freeing multiple sequential entries

in parallel. With a FIFO, it is very simple to access sequential elements in parallel

because the indices of a FIFO can be pre-computed from the head pointer.

Conversely, the linked-list can only sequence a single entry at a time because the

index of the next entry is stored with the previous entry and cannot be pre-computed.

The use of multiple next pointers (example: next-pointer 1, next-pointer 2, etc.) in

each entry can assist in this effort, at the expense of added management complexity

and storage requirements. The use of coarse-grained linked-lists, such as segmented

linked-lists, can also mitigate the problem, at the expense of internal fragmentation.

3) Pre-allocation and delayed reclamation of resources: A less intrusive approach that

allows the use of a FIFO is pre-allocation and delayed reclamation of resources. This

solution avoids the complexity of linked-list designs and the latency for expanding a

traditional FIFO. To allow easy insertion of CD instructions, one can estimate the

maximum number of resources needed by the CD region and then pre-allocate these

82

resources (Cher, et al., 2001). Padding eliminates the need to expand the ROB and

LSQ when inserting instructions in the middle of the window. Invalid entries (due to

removing instructions or not using all reserved entries) are not reclaimed

immediately. Instead, reclamation is delayed until invalid entries reach the head of the

ROB or LSQ. Delayed reclamation and inaccurate pre-allocation of resources can

cause internal fragmentation. This approach underutilizes the ROB/LSQ and may

degrade performance.

4) Temporary buffer assisted shifting: This method achieves the same goal as the

collapsing/expanding buffer but with fewer downsides. After a branch misprediction

is detected, this method starts copying the CI instructions into a temporary buffer in

preparation for moving them to their new locations. After the new instructions have

been inserted (the correct CD instructions overwrite the incorrect CD instructions), it

is clear where the CI instructions buffered in the temporary buffer need to be copied.

Delaying copying of CI instructions until the right location is known emulates the

need to collapse and expand the buffer many times. This reduces the hardware

complexity compared to a collapsing/expanding buffer. However, this method shares

one downside with the collapsing/expanding buffer in that the shifting process may

take many cycles when compared with a linked-list implementation of the ROB/LSQ.

This solution is described in more detail in Section 6.3.1.

Alternatively, a ROB-free checkpoint-based architecture may be used (Akkary, et al.,

2003) (Cristal, et al., 2004) (Cristal, et al., 2002). The solution substitutes fine-grain

retirement using the ROB with coarse-grain retirement using checkpoints. By removing the

83

ROB, we are only left with the LSQ as an ordered resource in the processor to deal with.

Identifying the synergy between control independence and ROB-free checkpoint-based

processors is a contribution of this thesis and is explored in depth in Chapter 6.

Unlike the ROB and LSQ, the register file’s (RF) entries (physical registers) are not

allocated and freed in program order, making it compatible with control independence.

Unfortunately, conventional processors manage the freeing of RF entries using an ordered

free list that is incompatible with control independence.

The RF’s free list is ordered, giving the RF some ordered resource traits.

Conventionally, the RF can reclaim physical registers in bulk after a branch misprediction

like the ROB and LSQ. This is achieved by checkpointing the free list head pointer at

branches, and restoring the checkpointed head pointer corresponding to a mispredicted

branch. This single action bulk-frees the physical registers of all instructions – both CD and

CI – after the mispredicted branch. Traditional management of the RF free list is

incompatible with control independence. Simply restoring the free list head pointer to its

checkpointed location at the mispredicted branch is not sufficient, because physical registers

allocated to CI instructions must not be freed. Instead, selectively freeing physical registers

requires walking the incorrect CD instructions to free only their physical registers. In

addition, allocating new physical registers to the correct CD instructions in the middle of the

window will require the order of the free list to be repaired (just like the ROB and LSQ).

To address this issue, we propose using an alternate register freeing mechanism that does

not rely on an ordered free list. Aggressive register reclamation does not use an ordered free

list and is based instead on usage counters (Moudgill, et al., 1993) (Akkary, et al., 2003). A

84

register is freed once all known consumers read the register’s value and the register is no

longer referenced by any checkpoint or rename map table. Leveraging aggressive register

reclamation to manage the RF makes it fully compatible with control independence. This

proposed solution is used in TCI (Chapter 6) and is one of many novel contributions of this

thesis.

5.2 Repairing the CI region

This section discusses implementation aspects and performance factors of repairing the

CI region. The CI instructions are already in the window and need not be re-fetched.

However, some CIDD instructions need to have their register or memory data dependencies

repaired to reflect the repaired CD region and then all CIDD instructions need to be re-

executed.

5.2.1 Repairing the data dependencies of CIDD instructions

CIDD instructions are either directly data dependent on the CD region (direct CIDD) or

indirectly data dependent on the CD region (indirect CIDD). Direct CIDD instructions have

potentially stale source register names or stale memory dependencies, after repairing the CD

region. Indirect CIDD instructions are data dependent on the direct CIDD instructions.

Instructions that depend on indirect CIDD instructions are also indirect CIDD instructions.

Direct and indirect CIDD instructions can be identified with the help of information provided

by the CFS, IRS, and store/branch set predictor described in Chapter 4.

Repairing the direct CIDD instructions’ data dependencies involves repairing the register

data dependencies and the memory data dependencies. Memory data dependencies need not

be explicitly repaired. CIDD Loads will repair their memory data dependencies when they

85

are re-executed (they will have access to the repaired CD store instructions). On the other

hand, register data dependencies need to be explicitly repaired before re-execution can start.

Register data dependencies are repaired by correcting the source register names of direct

CIDD instructions, linking them to their correct producers.

Traditional processors with conventional (full) branch misprediction recovery do not

support selectively re-renaming CIDD instructions that are already in the window. In the

following three sub-sections, we look at three possible mechanisms (Seq CI, Proxy, and Seq

CIDD) to achieve this goal and investigate their impact on a traditional processor’s

performance and complexity.

5.2.1.1 Sequencing CI instructions (Seq CI)

One way to correct the CIDD instructions’ source register names is to use the same

approach used by conventional (full) branch misprediction recovery to generate correct data

dependencies. With conventional recovery, all instructions after the misprediction are

squashed (incorrect CD instructions and CI instructions) and the correct instructions are

fetched and renamed (correct CD instructions and CI instructions). Using this approach with

control independence requires some modifications because the CI instructions are not

squashed and need not be re-fetched.

The modified approach would only squash the incorrect CD instructions and fetch the

correct CD instructions, but would rename all instructions after the mispredicted branch

(correct CD instructions and CI instructions). Since the modified approach does not re-fetch

the CI instructions, it needs to sequence through the CI instructions already buffered in the

processor. Therefore, this approach is referred to as sequence CI (Seq CI).

86

The Seq CI approach leverages the existing register rename stage of the processor to re-

rename all CI instructions after a mispredicted branch. In the re-renaming process, direct

CIDD instructions’ source mappings are automatically repaired, reflecting the corrected

control-flow (Rotenberg, et al., 1999) (Chou, et al., 1999).

The advantage of Seq CI is that it uses the processor’s already available mechanisms to

achieve its goal. However, the process of re-renaming all CI instructions is tantamount to re-

fetching all CI instructions, as implemented by conventional (full) recovery. This degrades

the potential performance of control independence. Furthermore, Seq CI requires buffering

all CI instructions in program order in the processor so that they can be sequenced in case of

a branch misprediction. This requirement adds an ordered resource to the processor, similar

to the ROB, which has the potential to further degrade performance and complicate the

design of the control independence implementation.

5.2.1.2 Proxy move instructions (Proxy)

An alternative to re-renaming the CIDD instructions is to use proxy move instructions

(Proxy). Proxy’s goal is to insulate the CIDD instructions from source name changes caused

by repairing the CD region (Cher, et al., 2001) (Gandhi, et al., 2004).

To implement the Proxy method, the processor needs to insert a proxy move instruction

for each production in the CD region at the reconvergent point (between the CD instructions

and CI instructions). The destination physical registers of the proxy move instructions are

pinned. This ensures source names of direct CIDD instructions do not change with changing

control-flow. After renaming the correct CD instructions, only the proxy move instructions

need to be re-renamed to repair their source names. The proxy move instructions then

87

forward the values from their re-renamed source physical registers to their pinned destination

physical registers. This assures that CIDD instructions will receive the correct source values

during re-execution.

CD region productions need to be identified to know which proxy move instructions to

insert at the reconvergent point. This information can be provided by the IRS. In addition, to

be able to re-rename the proxy move instructions, they need to be buffered in the processor.

Proxy has the advantage of eliminating the need to re-rename CI instructions when

servicing a branch misprediction, however, at the cost of extra resource pressure and

renaming bandwidth for the added proxy move instructions. Extra physical registers, issue

queue entries, etc. are consumed by the proxy moves. More importantly, Proxy’s resource

overhead and rename overhead affects the performance of the system even when all branches

are correctly predicted, forcing us to cover branches selectively for good overall

performance. This problem is not present in the sequencing repair approaches (Seq CI and

Seq CIDD).

5.2.1.3 Sequencing CIDD instructions (Seq CIDD)

The two re-renaming techniques discussed previously have opposing tradeoffs. On the

one hand, the Seq CI approach has a high re-rename bandwidth requirement, but does not

incur extra resource or execution bandwidth. On the other hand, the Proxy approach reduces

the required re-rename bandwidth, but requires extra cycle-critical resources and execution

bandwidth for the proxy move instructions. Ideally, we would like a solution that minimizes

re-rename bandwidth while not requiring any extra cycle-critical resources.

88

This thesis introduces a new selective re-renaming mechanism. By pre-identifying the

CIDD instructions during dispatch, this technique attempts to only re-rename the CIDD

instruction stream and hence is called the sequence CIDD (Seq CIDD) approach. This

approach has the potential to conserve re-renaming bandwidth compared to the Seq CI

approach.

Like the Seq CI approach, the Seq CIDD approach leverages the existing register

renaming stage of the processor to repair the source names of the CIDD instructions. After

renaming the correct CD instructions, Seq CIDD re-renames the pre-identified CIDD

instructions, repairing their source names. The process of re-renaming only the CIDD

instructions needs special care, as this instruction stream contains holes corresponding to

absent CIDI instructions.

Conventional register renaming requires processing instructions in program order to

ensure that correct register linkages are produced. However, CIDD and CIDI instructions are

interleaved, which makes conventional renaming inadequate for renaming only CIDD

instructions. Figure 23 shows an example of a sequence of instructions from the CI region.

Register R1 depends on the CD region, therefore, instructions with “*” are CIDD. When

using the Seq CI repair mechanism, instruction #4 would receive a source mapping of P51 for

R5, which is correct. However, renaming only the CIDD instructions would cause instruction

#4 to receive P50 as a mapping for R5 during re-renaming, which is incorrect. This is a

consequence of having holes in the CIDD instruction stream. To circumvent this problem,

Seq CIDD requires identifying CIDI-supplied source registers, in the example of instruction

#4 the source R5, and avoiding re-renaming of these source operands. Source operands not

89

re-renamed would need to reuse their old source names. A detailed control independence

implementation using the Seq CIDD approach is presented in Chapter 6. Note that our

approach goes a step further, supplanting the CIDI-supplied source registers with their actual

values.

#1*: Add R5(P50), R1(P10), R2(P20)

#2*: Add R3(P31), R1(P10), R5(P50)

#3 : Add R5(P51), R4(P40), R6(P60)

#4*: Add R7(P70), R1(P10), R5(P51)

Figure 23. Sequence of instructions from the CI region.

In addition to saving re-renaming bandwidth, Seq CIDD reduces the instruction

buffering requirement compared to Seq CI. In Seq CI, all instructions need to be buffered

(like in a ROB) in anticipation for a branch misprediction. However, in Seq CIDD, only the

CIDD instructions need to be buffered. This is especially important when looking at very

large instruction windows.

5.2.2 Re-executing CIDD instructions

After correcting the CIDD instructions’ source names, all CIDD instructions need to re-

execute to produce correct values. Re-execution of CIDD instructions is not fully supported

by conventional processors. CIDD instruction re-execution requires all needed resources

(issue queue entries and physical registers) be allocated (Section 5.2.2.1), and also requires

that their source operands’ resources (physical registers) be available (Section 5.2.2.2).

90

5.2.2.1 CIDD instructions’ resources

Re-execution (like normal execution) of CIDD instructions requires that they are

allocated issue queue entries and destination physical registers. One approach to support re-

execution is to hold the resources (issue queue entries and physical registers) originally

allocated to the CIDD instructions when they were first fetched and dispatched until the

branch resolves (Hold IQ). This minimizes changes to the resource management of the

processor. However, re-execution may occur many cycles after the first execution has

occurred. Holding these cycle-critical resources for this whole period of time can create extra

resource pressure. In turn, this can degrade performance compared to conventional

speculation, which allows resources to be reclaimed aggressively (issue queue entries, and

physical registers when using aggressive register reclamation) since full recovery squashes

and re-fetches all instructions after a branch misprediction.

Alternatively, the resources allocated to CIDD instructions can be released aggressively

according to conventional speculation, and reallocated only when re-execution is needed

(Drain IQ). So, after the CIDD instructions execute for the first time, they are free to release

their resources. These CIDD instructions are buffered in an auxiliary re-execution buffer

(RXB) for purposes of re-execution. After the branch misprediction is detected and during

recovery of the CI region, all CI (Seq CI) or only CIDD (Seq CIDD) instructions are re-

renamed. During re-renaming, CIDD instructions are re-dispatched into the issue queue and

reallocated destination physical registers. This provides the CIDD instructions with the

needed resources for re-execution. Therefore, Drain IQ trades the resource pressure of Hold

91

IQ for additional re-rename bandwidth needed to reallocate resources for the CIDD

instructions.

5.2.2.2 CIDI instructions’ resources

In addition to the resources held by the CIDD instructions themselves, re-execution

requires that all CIDD instructions’ source operands be allocated physical registers. Source

values feeding CIDD instructions, but not produced by other CIDD instructions, need to be

available for correct execution. These producers may include CIDI instructions, CD

instructions, or instructions from before the branch. Note that latest producers of architectural

registers from before the reconvergent point (CD instructions and instructions from before

the branch) will still have their physical registers allocated (hence referencable) because their

mappings will be live in the rename map used for repairing the CD region. On the other

hand, CIDI instructions are co-mingled with the CIDD instructions and need to be dealt with

specially. One solution is to force all CIDI instructions to hold their resources. This solution

makes control independence architectures inefficient and defeats the purpose of resource-

efficient techniques such as aggressive register reclamation.

Alternatively, the CIDI instructions can release their physical registers by depositing

their values in the RXB (in program order with respect to interleaved CIDD instructions).

Hence, if re-execution of the CIDD instructions is required, the CIDI instructions can be

reallocated physical registers and their saved destination values can be reloaded into the

newly allocated physical registers. One could further optimize this solution by allowing the

CIDD instructions to replace their CIDI-supplied source register mappings with the actual

checkpointed values from the CIDI instructions. This avoids revisiting CIDI instructions

92

altogether, further increasing overall efficiency by virtue of (1) not including CIDI

instructions in the RXB, (2) not re-renaming CIDI instructions (re-renaming bandwidth), and

(3) not allocating registers to CIDI instructions during recovery.

5.2.3 Control independence configurations

Different control independence implementations have different resource and bandwidth

overheads, depending on the way they fulfill the requirements to repair the CD and CI

regions. In this section, we will focus on the performance impact of the different approaches

to repair the CI region, on a common substrate.

For a common substrate, we choose a ROB-free checkpoint-based processor with

aggressive register reclamation, for its compatibility with control independence. First, this

substrate simplifies the repair of the CD region by minimizing the number of ordered

resources used in the substrate. The ROB, which traditionally was a major complication for

control independence implementations, is removed, allowing for arbitrary removal and

insertion of CD instructions. In addition, using aggressive register reclamation allows the

register file to be fully compatible control independence (avoid managing the RF with the

ordered free list). Physical registers are now reclaimed based on usage counters and not the

ROB.

Second, this substrate is resource-efficient, which allows it to construct a large window

of instructions with small cycle-critical resources. Interestingly, control independence’s

ability to tolerate branch mispredictions, avoiding squashing of CI instructions, also permits

creating a large window of useful instructions. Hence, the resource efficiency of the

93

checkpointed substrate coupled with the branch misprediction tolerance of control

independence form a symbiotic relationship.

The only remaining complication in repairing the CD region involves the LSQ. For this

ordered resource, we will employ the temporary buffer assisted shifting solution. This

minimizes the effect of repairing the CD region, allowing us to focus on repairing the CI

region.

The CI region repair process involves repairing the CIDD instructions’ source register

mappings and then re-executing the CIDD instructions to generate correct results. Different

implementations repair CIDD instructions in different ways, and with various resource and

bandwidth overheads.

Three source mapping repair mechanisms are studied. Proxy uses proxy move

instructions to insulate the CI instructions from source name changes, needing only to re-

rename the proxy move instructions after a branch misprediction. Seq CI re-renames all CI

instructions. Seq CIDD re-renames only the pre-identified CIDD instructions. Seq CIDD

requires TCI’s mechanisms and is described in detail in Chapter 6 as part of a complete

implementation.

For re-execution of CIDD instructions, two methods are investigated. The first is

conservative and holds all instructions in the issue queue to achieve selective re-execution.

This model is labeled Hold IQ. This selective re-execution approach is used by some prior

control independence architectures designed on superscalar substrates (Rotenberg, et al.,

1999) (Cher, et al., 2001) (Gandhi, et al., 2004). The second selective re-execution substrate

is more aggressive and allows instructions to drain out of the issue queue fully or partially.

94

This model is labeled Drain IQ. Under this model, selective re-execution is accomplished in

different ways based on the source mapping repair mechanism. For Proxy, the issue queue is

partially drained, leaving the proxy move instructions and the CIDD instructions in the issue

queue for re-execution. This is signified by Drain IQ (partial). For Seq CI, all instructions

(including data they produce) are drained and buffered in a re-execution buffer (RXB).

Selective re-execution is achieved by sequencing the RXB and re-dispatching the CIDD

instructions. Similarly, Seq CIDD also uses the RXB for selective re-execution. However, for

Seq CIDD, only the pre-identified CIDD instructions are buffered in the RXB. The RXB-

based models are signified by Drain IQ (all).

Table 4. Resource and bandwidth usage for repairing CIDD instructions.

Model

Hold resources until branch
resolves CI resequencing bandwidth

Related work

 Registers
Issue

Queue RXB Re-renaming Re-execution

 Base none none none CIDD + CIDI CIDD + CIDI

H
ol

d
IQ

Proxy all all none proxy CIDD + proxy
(Cher, et al., 2001)ª,
(Gandhi, et al., 2004)

Seq CI all all none CIDD + CIDI CIDD
(Rotenberg, et al., 1999),
(Rotenberg, et al., 1999)

Seq CIDD all all none CIDD CIDD

D
ra

in
 IQ

 Proxy
some CIDI +
CIDD + proxy

CIDD +
proxy

none proxy CIDD + proxy

Seq CI none none all CIDD + CIDI CIDD
(Akkary, et al., 1998),
(Chou, et al., 1999)

Seq CIDD none none CIDD CIDD CIDD TCI

ªCited for the use of proxy instructions, and not skipper style control independence.

Table 4 compares the resource and bandwidth overheads for repairing the CIDD

instructions, for Base (conventional recovery), Proxy, Seq CI, and Seq CIDD, on both Hold

IQ and Drain IQ re-execution substrates. The Base model always drains instructions out of

95

the issue queue (since conventional recovery squashes all instructions after a branch

misprediction). In addition, the last column in Table 4 cites previous implementations from

the literature that share the same CIDD repair mechanism (but not necessarily the base

substrate or the CD repair mechanisms). Resources are divided into physical register usage

(Registers), issue queue entries held (Issue Queue), and instructions occupying the RXB

(RXB). Bandwidth is divided into re-renaming and re-execution bandwidth. Drain IQ/Seq

CIDD is qualitatively the best or tied for best in every category and is the basis for the TCI

implementation discussed in Chapter 6. Drain IQ/Seq CIDD may re-rename fewer or more

instructions than Proxy, depending on the number of proxy instructions and CIDD

instructions being re-renamed. Moreover, Drain IQ/Seq CIDD does not incur

resource/bandwidth overheads on correctly predicted branches like Proxy.

5.2.4 Results (resource and bandwidth overheads)

Figure 24 (a) shows the harmonic mean of IPCs for 15 of the SPEC integer benchmarks

listed in Section 2.2, for the seven models. Figure 24 (b) excludes benchmark mcf from the

harmonic mean because the extremely low IPC of mcf obscures trends. The issue queue size

is varied to understand resource pressure. The resource inefficiency of the Hold IQ re-

execution substrate is a major bottleneck with small issue queues. In fact, Base outperforms

all Hold IQ models, for issue queues with fewer than 256 entries (128 entries excluding mcf).

This is because the issue queue limits the overall window size when all instructions are held

in the issue queue.

Ideally, all instructions should free all cycle-critical resources speculatively, allowing for

a bigger window, and CIDD instructions should only be re-allocated resources when

96

selective re-execution is required after a branch misprediction. Drain IQ strives for this goal.

However, Proxy falls short of this ideal scenario because proxy and CIDD instructions

remain in the issue queue for possible selective re-execution. The remaining issue queue

pressure is evident in Figure 24: Proxy is unique in its sensitivity to issue queue size

compared to other models with Drain IQ. In fact, for a 16-entry issue queue, Proxy has no

performance advantage over conventional recovery (Base) let alone the other selective

recovery approaches. On the other hand, a 64-entry issue queue enables Proxy to overtake

Seq CI. Overall, Seq CIDD (TCI) performs the best due to its combined bandwidth and

resource efficiency.

Figure 24 (c) shows the harmonic mean of IPCs for benchmarks with high branch

misprediction rates, for all the models. This includes bzip, compress, go, gzip, twolf, and vpr,

all of which have more than 9 branch mispredictions per 1000 instructions. In these

benchmarks, the branch misprediction penalty is severe, so there is opportunity for large

improvements with the help of control independence. Therefore, we notice that the

improvements over Base, for all Drain IQ models, have further increased, but the trends

remain the same.

97

(a)

(b)

(c)

Figure 24. Performance of different CIDD repair models (harmonic mean).

Figure 25, Figure 26, and Figure 27 show the IPC results of the individual benchmarks

for the seven models. Looking at individual benchmark IPCs for the Drain IQ re-execution

substrate, some interesting phenomena can be observed.

1) Drain IQ/Seq CI can sometimes degrade performance with respect to Base. For

example, gap, vortex, and vpr show Drain IQ/Seq CI performs worse than Base, most

of the time. This is due to the window size limitation caused by buffering all

0.0

0.2

0.4

0.6

0.8

1.0

1.2

16 32 64 128 256

IP
C

Issue Queue Size

Harmonic mean - all Benchmarks

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

0.0

0.5

1.0

1.5

2.0

2.5

16 32 64 128 256

IP
C

Issue Queue Size

Harmonic mean - excluding mcf

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

16 32 64 128 256

IP
C

Issue Queue Size

Harmonic mean - benchmarks with high branch mispredi ction rate

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

98

instructions in the RXB (RXB size is 256 instructions). Drain IQ/Seq CIDD does not

have this limitation since it uses the RXB resource wisely, only storing CIDD

instructions, making the RXB less of a bottleneck (or not at all).

2) Drain IQ (partial)/Proxy can sometimes degrade performance with respect to Base for

small issue queues. This can be observed in bzip, crafty, li, and vpr for a 16-entry issue

queue.

3) Although Drain IQ/Seq CIDD outperforms Drain IQ (partial)/Proxy most of the time,

we notice that, for the benchmark vpr, Drain IQ (partial)/Proxy slightly outperforms

Drain IQ/Seq CIDD with an issue queue size of 256. One possible reason is that proxy

move instructions are no longer a resource concern with a 256-entry issue queue, and

during re-renaming, there are fewer proxy move instructions to be re-renamed than the

number of CIDD instructions needing re-renaming.

99

(a)

(b)

(c)

(d)

Figure 25. Performance of different CIDD repair models (individual benchmarks).

bzip

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

16 32 64 128 256
Issue Queue Size

IP
C

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

compress

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

16 32 64 128 256
Issue Queue Size

IP
C

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

crafty

0.0

0.5

1.0

1.5

2.0

2.5

3.0

16 32 64 128 256
Issue Queue Size

IP
C

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

gap

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

16 32 64 128 256
Issue Queue Size

IP
C

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

100

(a)

(b)

(c)

(d)

(e)

(f)

Figure 26. Performance of different CIDD repair models (individual benchmarks).

gcc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

16 32 64 128 256
Issue Queue Size

IP
C

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

go

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

16 32 64 128 256
Issue Queue Size

IP
C

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

gzip

0.0

0.5

1.0

1.5

2.0

2.5

3.0

16 32 64 128 256
Issue Queue Size

IP
C

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

ijpeg

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

16 32 64 128 256
Issue Queue Size

IP
C

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

li

0.0

0.5

1.0

1.5

2.0

2.5

3.0

16 32 64 128 256
Issue Queue Size

IP
C

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

mcf

0.00

0.02

0.04

0.06

0.08

0.10

0.12

16 32 64 128 256
Issue Queue Size

IP
C

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

101

(a)

(b)

(c)

(d)

(e)

Figure 27. Performance of different CIDD repair models (individual benchmarks).

parser

0.0

0.5

1.0

1.5

2.0

2.5

16 32 64 128 256
Issue Queue Size

IP
C

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

perl

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

16 32 64 128 256
Issue Queue Size

IP
C

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

twolf

0.0

0.5

1.0

1.5

2.0

2.5

16 32 64 128 256
Issue Queue Size

IP
C

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

vortex

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

16 32 64 128 256
Issue Queue Size

IP
C

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

vpr

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

16 32 64 128 256
Issue Queue Size

IP
C

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

102

Figure 28(a-c) shows the performance sensitivity of Drain IQ/Seq CI and Drain IQ/Seq

CIDD to the RXB size. In addition, the Base model is included for reference (Base is not

affected by the change in RXB size). Figure 28(a) shows the harmonic mean IPC of all

benchmarks, Figure 28(b) excludes mcf from the harmonic mean (to be consistent with

previous graphs), and finally Figure 28(c) shows the harmonic mean IPC of benchmarks with

high branch misprediction rates (more than 9 branch mispredictions per 1000 instructions).

Seq CI is very sensitive to RXB size since all instructions are inserted into the RXB,

therefore, the RXB limits the overall window size (like a ROB). In contrast, Seq CIDD is

much less sensitive to the RXB size since only CIDD instructions are inserted into the RXB,

therefore, the RXB does not limit the overall window size. This trend is observable in all the

figures. In fact, Seq CIDD only needs an RXB of 64 entries to achieve most of the

performance potential (on average).

103

(a) (b)

(c)

Figure 28. Sensitivity to RXB size.

Figure 29, Figure 30, and Figure 31 show the IPC results of the individual benchmarks

for Seq CI and Seq CIDD. Looking at individual benchmarks, two interesting trends can be

observed. First, for 10 of 15 benchmarks, Seq CIDD only needs an RXB with 32 entries.

Second, we notice that Seq CI degrades performance with respect to Base even for

benchmarks with low branch misprediction rates, such as gap and perl. On the other hand,

Seq CIDD does not have this problem as it occupies the RXB based on branch confidence,

allowing highly predictable branches’ CIDD instructions to circumvent the RXB.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

32 64 128 256 512

IP
C

RXB Size

Harmonic mean - all Benchmarks

Seq CIDD

Seq CI

Base
0.0

0.5

1.0

1.5

2.0

2.5

32 64 128 256 512

IP
C

RXB Size

Harmonic mean - excluding mcf

Seq CIDD

Seq CI

Base

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

32 64 128 256 512

IP
C

RXB Size

Harmonic mean - benchmarks with high branch mispredi ction rate

Seq CIDD

Seq CI

Base

104

(a)

(b)

(c)

(d)

Figure 29. Sensitivity to RXB size (individual benchmarks).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

32 64 128 256 512

IP
C

RXB Size

bzip

Seq CIDD

Seq CI

Base

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

32 64 128 256 512

IP
C

RXB Size

compress

Seq CIDD

Seq CI

Base

0.0

0.5

1.0

1.5

2.0

2.5

3.0

32 64 128 256 512

IP
C

RXB Size

crafty

Seq CIDD

Seq CI

Base

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

32 64 128 256 512

IP
C

RXB Size

gap

Seq CIDD

Seq CI

Base

105

(a)

(b)

(c)

(d)

(e)

(f)

Figure 30. Sensitivity to RXB size (individual benchmarks).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

32 64 128 256 512

IP
C

RXB Size

gcc

Seq CIDD

Seq CI

Base
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

32 64 128 256 512

IP
C

RXB Size

go

Seq CIDD

Seq CI

Base

0.0

0.5

1.0

1.5

2.0

2.5

3.0

32 64 128 256 512

IP
C

RXB Size

gzip

Seq CIDD

Seq CI

Base
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

32 64 128 256 512

IP
C

RXB Size

ijpeg

Seq CIDD

Seq CI

Base

0.0

0.5

1.0

1.5

2.0

2.5

3.0

32 64 128 256 512

IP
C

RXB Size

li

Seq CIDD

Seq CI

Base

0.00

0.02

0.04

0.06

0.08

0.10

0.12

32 64 128 256 512

IP
C

RXB Size

mcf

Seq CIDD

Seq CI

Base

106

(a)

(b)

(c)

(d)

(e)

Figure 31. Sensitivity to RXB size (individual benchmarks).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

32 64 128 256 512

IP
C

RXB Size

parser

Seq CIDD

Seq CI

Base

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

32 64 128 256 512

IP
C

RXB Size

perl

Seq CIDD

Seq CI

Base

0.0

0.5

1.0

1.5

2.0

2.5

32 64 128 256 512

IP
C

RXB Size

twolf

Seq CIDD

Seq CI

Base
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

32 64 128 256 512

IP
C

RXB Size

vortex

Seq CIDD

Seq CI

Base

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

32 64 128 256 512

IP
C

RXB Size

vpr

Seq CIDD

Seq CI

Base

107

Chapter 6

Transparent Control Independence (TCI)

In Chapter 5, we contrasted and quantified the resource and bandwidth overheads of

Proxy, Seq CI, and Seq CIDD. We found that Seq CIDD combines the advantages of Proxy

(bandwidth-efficient) and Seq CI (resource-efficient) and eliminates their disadvantages,

while fulfilling the CI region re-renaming requirement. In this chapter, we present a new

microarchitecture that implements the Seq CIDD model. By proactively identifying CIDD

instructions in preparation for a branch misprediction, we only re-rename CIDD instructions

and only reallocate resources to CIDD instructions when recovery is needed.

6.1 High-level overview of TCI microarchitecture

Figure 32 shows our transparent control independence (TCI) architecture. The shaded

region highlights a resource-streamlined pipeline that aggressively releases resources based

on conventional speculation. Correct and incorrect instructions alike flow through the

pipeline as fast as they would with conventional speculation, aggressively freeing issue

queue entries and physical registers (Akkary, et al., 2003) (Cristal, et al., 2004) (Moudgill, et

al., 1993) (Srinivasan, et al., 2004) on the assumption that branch predictions are correct.

Instructions drain from the pipeline as soon as they complete – there is no reorder buffer

(ROB) and precise exceptions are achieved via checkpoints (Akkary, et al., 2003) (Cristal, et

al., 2004) (Moudgill, et al., 1993) (Srinivasan, et al., 2004) (Hwu, et al., 1987).

108

Figure 32. Transparent control independence (TCI) architecture.

When a branch is encountered in the fetch unit, its predicted CD instructions are fetched

from the instruction cache (I-cache), highlighted in Figure 32 with Step-1. These are soon

followed by the branch’s CI instructions, corresponding to Step-2 in the figure. Both the

predicted CD and CI instructions are renamed with the speculative rename map and sent

down the pipeline. The branch’s CIDD instructions are identified in the dispatch stage and

duplicates of these instructions are set aside in a FIFO buffer, the Selective Re-execution

Buffer (RXB), as shown. When these instructions issue and read their source operands from

the physical register file, copies of the source values are also set aside with the corresponding

instructions in the RXB. If, when the branch executes, a misprediction is detected, control is

temporarily transferred to the correct target of the branch. Corresponding to Step-3 in the

figure, the branch’s correct CD instructions are fetched from the I-cache and renamed using

the repair rename map, which is initialized from a corresponding branch checkpoint thus

ensuring the correct CD instructions have values in the physical register file to begin

execution with. When the reconvergent point is encountered again, control is transferred to

the branch’s CIDD instructions in the RXB, corresponding to Step-4 in the figure. These are

I-cache
Spec.

Rename
Map

Check-
points

Repair
Rename

MapSelective Re-Execution Buffer
(RXB)

Issue
Queue

Phys.
RF

1
2

predicted CD

CI

3
correct

CD

4
re-execute

CIDD

FU

to RXB
(CIDD instructions)

to RXB
(CIDD source values)

drain
instructions

109

also renamed using the repair rename map to establish linkages with producer instructions

prior to the reconvergent point. A key point is that the branch’s CIDD instructions residing in

the RXB do not tie up cycle-critical resources (issue queue entries and physical registers) and

are allocated resources only when control is transferred to the RXB, just like instructions that

are dispatched from the I-cache. Another key point is that CIDDs’ source operands that

depend on CIDI instructions cannot be resolved by the repair rename map because the CIDIs’

values were most likely freed from the physical register file already, and those that have not

been freed are inaccessible by the repair rename map anyway; fortunately, the source values

were individually checkpointed previously and are in the RXB with the CIDD instructions.

Loads issue aggressively and are speculative with or without branch mispredictions

(Chrysos, et al., 1998). Store-load dependences are also resolved correctly, as we explain in

Section 6.7 and Section 6.8.

6.2 Identifying and inserting CIDD instructions into RX B

This section explains how CIDD instructions are identified and inserted into the RXB by

the speculative rename map, in a process called poisoning.

6.2.1 Reconvergent point and Influenced Register Set (IRS) predictor

The compiler or a hardware predictor can be used to identify branches’ reconvergent

points. We use the dynamic reconvergence predictor proposed by Collins et al. (Collins, et

al., 2004). We augment the predictor to provide additional information for each branch. First,

the predictor keeps track of the maximum path length through a branch’s control-dependent

(CD) region, among paths that were traversed. This information is useful for guiding when to

apply control independence. We select a maximum CD path length above which it is not

110

worthwhile to exploit control independence due to the sheer number of incorrect CD

instructions. Second, we add a learning mechanism to collect a branch’s influenced register

set (IRS). As the predictor monitors retired instructions for reconvergence, it keeps track of

logical registers written to after the branch and before reconvergence is detected. The use of

confidence ensures repetition, so that enough different paths are traversed through a branch’s

CD region to yield a representative IRS.

6.2.2 Control-Flow Stack (CFS)

When a branch is dispatched, we must detect its reconvergent point among later

instructions as they are dispatched. The reconvergent point marks the beginning of CI

instructions, so it is at this point that we need to mark, or “poison”, influenced registers

(indicated by the branch’s IRS) in the speculative rename map.

A novel hardware mechanism called the control-flow stack (CFS) detects reconvergent

points in the dispatch stage. When a checkpointed branch is dispatched, its reconvergent PC

and checkpoint tag (to identify the branch) are pushed onto the CFS top-of-stack.

The next reconvergent point in the dynamic instruction stream is detected by comparing

the PCs of newly dispatched instructions to the reconvergent PC at the top-of-stack. If there

is a match, then the branch corresponding to the current top-of-stack has reconverged. We

know which branch this is via the checkpoint tag at the current top-of-stack. Since the

beginning of control-independent instructions has been reached, the branch’s IRS is used to

poison influenced registers at this time. Poisoning registers is explained in the next section.

Finally, the CFS top-of-stack is popped (removed), re-exposing the next reconvergent point

to search for.

111

The CFS can detect cases in which multiple branches have the same dynamic

reconvergent point. If the reconvergent PC of a newly dispatched branch matches the

reconvergent PC at the CFS top-of-stack, then the new branch and the branch corresponding

to the CFS top-of-stack have the same dynamic reconvergent point. They do not have the

same dynamic reconvergent point if the call depths of the two branches are different, e.g.,

due to recursion. We make the test definitive by tracking call depth in the dispatch stage and

including call depths in CFS entries. If the new branch’s reconvergent PC and call depth

match the CFS top-of-stack, then the branches have the same dynamic reconvergent point. In

this case, the new branch does not push a new entry onto the CFS, implicitly “merging” with

the CFS top-of-stack.

There are three cases in which a branch is forced to inherit the reconvergent point of its

encompassing branch region: if the branch does not have a predicted reconvergent PC, if

there are no free checkpoints, or if the branch is confidently predicted. The branch

corresponding to the CFS top-of-stack is the closest encompassing branch. Thus, the new

branch inherits the reconvergent point of its encompassing branch simply by not pushing

onto the CFS and instead merging as explained above.

The CFS only needs as many entries as there are checkpoints (16 entries our default

configuration). CFS entries of branches that resolve before they reconverge are collapsed

away (since they are not popped).

112

6.2.3 Poison vectors

After a branch’s CD region is fetched and its reconvergent point is detected by the CFS,

we are ready to use the branch’s IRS to poison registers and thereby identify CIDD

instructions. Each influenced register specified in the IRS must be poisoned.

We provide a 16-bit poison vector per entry in the speculative rename map. A logical

register is poisoned if one or more bits are set in its poison vector. Moreover, which bits are

set indicates which branches a logical register is influenced by. A checkpointed branch is

identified by its checkpoint tag. A non-checkpointed branch is identified by the checkpoint

tag of the branch from which it inherited its reconvergent point (discussed in Section 6.2.2).

Since we use 16 checkpoints in the default configuration, a poison vector has 16 bits in the

default configuration.

When a branch reconverges, the poison vector of each influenced register, specified by

the IRS, is updated in the speculative rename map. In particular, the poison bit corresponding

to the branch’s checkpoint tag is set.

CIDD instructions can now be identified during renaming. When an instruction’s logical

source registers are renamed, the corresponding poison vectors are ORed together. If the

ORed vector has any bits set, the instruction is CIDD with respect to one or more branches.

Also, the ORed vector overwrites the poison vector of the logical destination register, in the

speculative rename map. This propagates poison status for identifying indirect CIDD

instructions.

113

When a checkpoint is freed, the corresponding poison bit is cleared in all poison vectors.

Given that all branches associated with the checkpoint are now resolved, no future

instructions should be considered CIDD with respect to these branches.

Only the speculative rename map, repair rename map, and checkpoints have poison

vectors. Poison vectors in the repair rename map and checkpoints are discussed in Section

 6.3.

6.2.4 Inserting CIDD instructions into the RXB

CIDD instructions are inserted into the RXB in program order at the dispatch stage.

When a CIDD instruction issues and reads its source values from the physical register file, it

replaces its source mappings in its entry in the RXB with the source values (a bit is set within

its entry in the RXB to signify that source values have replaced source mappings).

6.3 Misprediction recovery

When a misprediction is detected, the fetch unit temporarily redirects fetching to the

correct target of the mispredicted branch. Correct CD instructions are fetched from the

instruction cache and renamed using the repair rename map initialized from a checkpoint at

the branch. The repair rename map, like the speculative rename map, has its own CFS to

detect the reconvergent point again thus detecting the end of the correct CD instructions (its

CFS also identifies new nested branch regions). At this point, the branch’s CIDD instructions

are fetched from the RXB, re-renamed using the repair rename map, and re-injected into the

pipeline. Finally, the repair rename map is used to fix up the speculative rename map and

checkpoints.

114

6.3.1 Reconstructing the RXB

The RXB contains CIDD instructions with respect to all unresolved branches. This

means the RXB must be reconstructed when recovering from a branch misprediction, as

follows.

� Case A. There may be instructions from the branch’s incorrect CD path in the RXB,

that were thought to be CIDD with respect to other prior branches. These have to be

removed from the middle of the RXB.

� Case B. New instructions from the correct CD path may be CIDD with respect to

other prior branches. These have to be inserted into the middle of the RXB.

� Case C. Instructions in the RXB that are only CIDD with respect to the branch being

serviced should be selectively removed from the RXB, since they will not be

revisited again. Instructions in the RXB that are CIDD with respect to other branches

(whether or not they are also CIDD with respect to the current branch) must remain

in the RXB. Note that these two types of instructions are co-mingled in the RXB.

There is only one solution and it is simple, because it is analogous to initial CIDD

identification and insertion into the RXB described in the previous section. The recovery

program for the current branch is comprised of the correct CD instructions from the

instruction cache and all instructions in the RXB logically after the resolved branch’s

reconvergent point. (The recovery program is not as efficient as it could be because it has

CIDD instructions of other branches that are not also CIDD with respect to the current

branch.) Poisoning of the recovery program via the repair rename map can once again

construct the RXB contents. As a preliminary step, the RXB tail pointer is moved back to the

115

branch (even though the branch may not be in the RXB physically, the branch knows its

logical position in the RXB). This naturally takes care of any incorrect CD instructions in the

RXB since they will get overwritten by the adjusted tail pointer (case A). Then, poisoning the

recovery program using the repair rename map will naturally (1) insert new CIDD

instructions with respect to prior branches from among the correct CD instructions (case B),

and (2) insert old CIDD instructions only if they are CIDD with respect to remaining

unresolved branches (case C).

Since CIDD instructions are concurrently fetched from the RXB (while fetching the

recovery program) and inserted into the RXB (while constructing a new recovery program),

we need a mechanism to prevent overwriting CIDD instructions in the RXB before they are

fetched. We set up a pre-read pointer into the RXB, that points to the first CI instruction with

respect to the resolved branch. Since we moved the tail pointer to the branch, the pre-read

pointer is logically after the tail pointer. The pre-read pointer is where fetching of CIDD

instructions is supposed to begin. If we wait until the correct CD path is fetched, some of the

CIDD instructions beginning at the pre-read pointer could get clobbered by the advancing tail

pointer. Therefore, using the pre-read pointer, we begin pre-reading CIDD instructions from

the RXB right away so that they cannot get clobbered. They are transferred to a Temp Buffer,

from which fetching of CIDD instructions will eventually begin (after the correct CD

instructions are fetched from the instruction cache).

Figure 33 shows a detailed RXB reconstruction example with two branches, B1 and B2,

and respective reconvergent points R1 and R2. Logical positions of B1/R1 and B2/R2 with

respect to RXB instructions are indicated with wide black arrows. RXB instructions are

116

labeled with their position # in the dynamic instruction stream. Noncontiguous numbers

merely highlight that CIDD instructions are noncontiguous. Instruction x is not numbered

because it is an incorrect CD instruction of mispredicted branch B2. Furthermore,

instructions are marked with either a rectangle or oval: rectangles are CIDD with respect to

B1, ovals are CIDD with respect to B2, rectangle+oval are CIDD with respect to both B1 and

B2. Below we step through each of the frames (a)-(g).

(a) Frame (a) shows the initial state of the RXB. B1 has no CD instructions in the RXB

since there are no branches prior to it. B1 has four CIDD instructions after R1: 9, x,

16, 20. B2 has one (incorrect) CD instruction, x. Instruction x is not in the RXB

because of B2 but rather because it is CIDD with respect to B1. B2 has two CIDD

instructions after R2: 18, 20.

(b) In frame (b), mispredicted branch B2 is detected, causing the RXB tail to rollback to

just after B2 (instruction x), and the RXB pre-read pointer to initiate at the first CIDD

instruction past B2’s reconvergent point R2 (instruction 16).

(c) In frame (c), new instructions 11 and 12 – correct CD instructions with respect to B2

– are fetched from the instruction cache (I$) and dispatched for the first time to the

issue queue (To IQ). Moreover, instruction 12 is inserted into the RXB because it is

CIDD with respect to B1. Instruction 12 is inserted at the RXB tail (which then

advances) thereby replacing instruction x. Note also that pre-reading has begun:

instruction 16 is transferred to the Temp Buffer so that it is not clobbered by B2’s

incoming correct CD instructions.

117

(d) Similarly, in frame (d), we continue fetching and dispatching the remainder of B2’s

correct CD instructions (13 and 14). Both 13 and 14 are dispatched to the issue queue

but only 14 is inserted into the RXB, since 14 is CIDD with respect to B1. Meanwhile

we continue pre-reading instructions (18) into the Temp Buffer.

(e) In frame (e), no more instructions are fetched from the I$ because B2’s reconvergent

point R2 has been reached from the correct CD path. We begin reinjecting and/or

recirculating CIDD instructions from the Temp Buffer. Frame (e) shows instruction

16 leaving the Temp Buffer only to be recirculated back to the RXB (CIDD on

unresolved B1). It is not reinjected into the issue queue because it is not CIDD on B2

(the mispredicted branch).

(f) However, instruction 18 in frame (f) is reinjected into the issue queue (CIDD on

resolved B2) and not recirculated back to the RXB since it is not CIDD on B1.

(g) Finally, in frame (g), instruction 20 is both reinjected into the issue queue and

recirculated to the RXB from the Temp Buffer, because it is CIDD on both B1 and

B2. Since the Temp Buffer is empty, we are done servicing B2.

118

Figure 33. RXB reconstruction example.

To IQ

To RXB
Temp Buffer (TB)ID

I$

RXB
Tail

RXB
Head

Selective Re-execution Buffer
(RXB)

B1 R1 R2B2

x9 16 18 20

Hi
a

RXB
Pre-read

To IQ

To RXB
Temp Buffer (TB)ID

I$

RXB
Tail

RXB
Head

B1 R1 R2B2

9 16 18 20

Hi
b

x

Hi
14

14

To IQ

To RXB
Temp Buffer (TB)ID

I$

RXB
Head

B1 R1 B2

9

16 18

20

RXB
Pre-read

12

R2

RXB
Tail

14

d13,1413

16

To IQ

To RXB
Temp Buffer (TB)ID

I$

RXB
Head

B1 R1 B2

9 16

18 20

12

R2

RXB
Tail

16

14

Hi

e

Hi18 To IQ

To RXB
Temp Buffer (TB)ID

I$

RXB
Head

B1 R1 B2

9 16

18
20

12

R2

RXB
Tail

14

f

Hi20 To IQ

To RXB
Temp Buffer (TB)ID

I$

RXB
Head

B1 R1

9 16

20

12

RXB
Tail

14

20

20

g

Hi
12

12

To IQ

To RXB
Temp Buffer (TB)ID

I$

RXB
Head

B1 R1 B2

9

16

18 20

RXB
Pre-read

12

R2

RXB
Tail

c11,1211

119

6.3.2 Poisoning via repair rename map

The repair rename map’s poison vectors are initialized from the mispredicted branch’s

checkpoint. While fetching the correct CD instructions from the instruction cache and CIDD

instructions from the RXB, the poison vectors are managed the same way as described for the

speculative rename map (Section 6.2.3), except for a subtle modification. The poison vectors

of logical registers that would have been updated by CIDI instructions, simply are not,

because they are not observed by the repair rename map. These logical registers represent

“holes” in the repair rename map and their poison vectors cannot be referenced by an

instruction’s source registers. Fortunately, we know two things: (1) the poison vector

generated by a CIDI instruction is all 0’s because it is not CIDD with respect to any

unresolved branch, and (2) a CIDI instruction is observed once (and only once) in either the

speculative rename map (CIDI immediately) or repair rename map (CIDI eventually). So,

when a source register of a CIDD instruction references a CIDI production for the first and

only time (signaled by an all-0 poison vector in the rename map), a sticky bit

(“CIDI_supplied”) associated with the source register in the RXB is set to indicate that the

source register’s poison vector is by definition all 0s. Once CIDI_supplied=1, in future

passes, an all-0 poison vector is used instead of referencing an absent poison vector in the

repair rename map. Table 5 summarizes poisoning using the repair rename map.

The outcome of poisoning by the repair rename map indicates what to do with each

instruction. For correct CD instructions from the instruction cache, the choices are: insert or

do not insert into the RXB. For CIDD instructions from the RXB, the choices are: reinject

only, insert (i.e., recirculate) only, reinject and insert, or discard. An instruction is inserted

120

into the RXB if poisoning indicates that it is CIDD with respect to any unresolved branches.

An instruction is reinjected into the pipeline if poisoning indicates that it is CIDD with

respect to the mispredicted branch being serviced.

Table 5. Poisoning using the repair rename map.

Source operand type

CIDI CIDD

Action
Use an all-0

poison vector
Read poison vector from

repair rename map

6.3.3 Reinjecting CIDD instructions

Only CIDD instructions from the RXB that are CIDD with respect to the branch being

serviced are reinjected into the pipeline. These are re-renamed to bind physical registers and

thereby facilitate re-execution.

CIDI instructions are absent from re-renaming, just as they were absent from poisoning.

Now, additionally, CIDD instructions from the RXB that are not reinjected are also absent

from re-renaming. The latter instructions are CIDD with respect to other branches but not

with respect to the branch being serviced. They are tantamount to CIDI instructions with

respect to the branch being serviced (“implicit” CIDI instructions), and need not be re-

executed. As such, they are not re-allocated storage and do not participate in re-renaming.

When re-renaming a source register of a reinjected CIDD instruction, we need to

determine if it depends on an explicit or implicit CIDI instruction (the two cases outlined

above) versus a CD or reinjected CIDD instruction. If it depends on an explicit or implicit

CIDI instruction, then the source value (if available) or source mapping from the RXB is

121

used in lieu of re-renaming, because the repair rename map has a stale name. Otherwise, the

correct mapping is obtained from the repair rename map. Table 6 summarizes re-renaming a

source operand using the repair rename map.

Table 6. Renaming using the repair rename map.

Source operand type

Explicitly CIDI CIDD but

implicitly CIDI CIDD

Action
Read value or

mapping from RXB
Read value or

mapping from RXB
Read mapping from
repair rename map

The source register depends on an explicit CIDI instruction if its CIDI_supplied bit in

the RXB is set. The source register depends on an implicit CIDI instruction if its poison

vector in the repair rename map does not have the current branch’s bit set. Note, it is safe to

reference the poison vector because all CIDD instructions in the RXB undergo poisoning. It

is only unsafe to reference the poison vector in the case of explicit CIDI instructions, which

is why the CIDI_supplied bit is checked first.

The reinjected CIDD instruction is allocated a new physical destination register and

updates the repair rename map accordingly.

If a CIDD instruction is both inserted (i.e., recirculated) into the RXB and reinjected into

the pipeline, its source registers may be updated in the RXB, analogous to what was

described in Section 6.2.4. Specifically, when it redispatches, a re-renamed source register

updates the corresponding source mapping in the RXB. When it reissues, it reads values from

122

the physical register file for source registers that did not reuse values from the RXB. These

new values replace corresponding source mappings in the RXB.

6.3.4 Merging repair/speculative rename maps

When RXB reconstruction is completed, the repair rename map is logically at the same

point in the dynamic instruction stream as the speculative rename map. Some mappings in

the speculative rename map have to be repaired using the repair rename map. Specifically,

any speculative mapping whose poison vector has the branch’s bit set may be incorrect (it

may have changed due to the control-flow adjustment). We simply copy the corresponding

mapping from the repair rename map to the speculative rename map. All poison vectors in

the repair rename map are copied.

Checkpoint maps are repaired the same way, as the repair rename map resequences

through the RXB and reaches checkpoints along the way.

6.4 Writing source values into the RXB

When a CIDD instruction leaves the issue queue and reads its source values from the

physical register file (or from the bypass network), it needs to access the RXB entry assigned

to it to replace the stored source mappings with the actual source values. However, a CIDD

instruction’s RXB entry may change its location as part of reconstructing the RXB during

branch misprediction recovery. The RXB entry may reside in the Temp Buffer temporarily,

only to be reinserted into a different RXB entry or to be discarded from the RXB altogether

(no longer CIDD on any branch). In either case, the in-flight CIDD instructions still in the

pipeline have stale RXB entry numbers (RXB tags) that need to be repaired, to prevent

corrupting the RXB contents by way of updating the wrong RXB entries.

123

Furthermore, multiple instances of the same CIDD instruction may be in the pipeline

concurrently, waiting for their opportunity to update the shared RXB entry. This situation

may arise because an original dispatched instance has not issued by the time a branch

misprediction starts servicing or because an instruction that is CIDD on multiple branches is

injected multiple times due to servicing multiple branch mispredictions independently. In

either case, only the last dispatched instance of a given CIDD instruction needs to update the

RXB entry with source values, since the last instance has the most up-to-date source

mappings that reflect the current state of the processor.

To overcome these challenges, a solution needs to be implemented that can fulfill two

requirements:

1) Enable valid CIDD instructions in the pipeline to access their RXB entries even in the

presence of RXB reconstruction (RXB-entry recirculation).

2) Invalidate the RXB tags of some CIDD instructions in the pipeline, in reaction to

freeing some RXB entries or reinjecting duplicate copies of the CIDD instructions

into the pipeline.

We propose using an indirection table (IT) in conjunction with the RXB to fulfill both of

these requirements. The indirection table contains the actual RXB/TB mapping, a valid bit

indicating if the mapping is valid or not, and a Temp Buffer bit indicating if the RXB entry is

in the Temp Buffer. As CIDD instructions (either original CIDD or reinjected CIDD)

dispatch into the pipeline, they are allocated an entry in the IT in addition to the RXB entry.

The IT entry is initialized as being valid and contains the newly allocated RXB entry number.

In-flight CIDD instructions carry with them only their IT entry number to access the RXB

124

entry, instead of the actual RXB entry number (since it may become stale). This level of

indirection allows us to insulate in-flight CIDD instructions from changes in the RXB.

Next, we show how the RXB’s IT is managed under different situations:

� Scenario 1: dispatching a CIDD instruction for the first time:

1) Allocate a new RXB entry and a new IT entry.

2) Initialize the new IT entry to point to the new RXB entry.

3) Initialize the new RXB entry’s IT index to point to the new IT entry.

� Scenario 2: writing source values into the RXB/TB:

1) Access IT entry.

2) If valid bit is not set, free IT entry and discard the source values.

3) If valid bit is set:

a. Read out mapping and entry location bit (in RXB or in TB).

b. Free the IT entry.

c. Update the RXB or TB with the source values and clear the IT index

stored in the RXB or TB entry.

� Scenario 3: moving entry from the RXB to the TB:

1) If the RXB entry has a valid IT index, set corresponding IT entry’s Temp Buffer

bit and overwrite the mapping with the new location in the TB.

2) If the RXB entry does not have a valid IT index, do nothing.

� Scenario 4: recirculating an RXB entry (moving entry from TB back to RXB) with

no reinjecting:

125

1) If the TB entry has a valid IT index, clear corresponding IT entry's Temp Buffer

bit and overwrite the mapping with the new location in the RXB.

2) If the TB entry does not have a valid IT index, do nothing.

� Scenario 5: recirculating an RXB entry (moving entry from TB back to RXB) while

reinjecting a new instance of a CIDD instruction:

1) If the TB entry has a valid IT index, clear corresponding old IT entry’s valid bit

(this prevents old CIDD instances that are still in-flight from wrongly updating

the RXB/TB). If the TB entry does not have a valid IT index, do nothing.

2) Allocate a new IT entry for the new CIDD instruction instance being reinjected.

3) Initialize the new IT entry to point to the existing RXB entry, i.e., the shifted

location in the RXB.

4) Overwrite the existing RXB entry’s IT index to point to the new IT entry.

The size of the RXB’s IT is equal to the maximum number of in-flight CIDD

instructions (in the issue queue or in the backend pipeline). The maximum number of CIDD

instructions in overall is equal to the size of the RXB. The maximum number of in-flight

instructions is equal to the size of the issue queue plus the number of instructions in the

backend pipeline (#backend pipeline stages * processor width). Hence, the size of the IT is

the lesser number between the maximum number of CIDD instructions and the maximum

number of in-flight instructions.

126

IT size = Minimum (

(RXB size),

(Issue queue size + (#backend pipeline stages * processor width))

)

The IT size presented above actually covers the worst-case scenario. However, in

practice, only a small percentage of in-flight instructions tends to comprise CIDD

instructions. Hence, the size of the IT can be much smaller.

IT size optimized = Minimum (

(RXB size),

(% CIDD * (Issue queue size + (#backend pipeline stages * processor width)))

)

6.5 Conventional recovery

If a branch misprediction is detected before the fetch unit has reached the branch’s

reconvergent point, then there is no need to transfer control to the repair rename map and

RXB, as there are no CI instructions with respect to the branch yet. This scenario is easily

detected by checking if the mispredicted branch has not yet popped the CFS (not

reconverged). In this case, the speculative rename map is simply restored to the checkpoint

corresponding to the mispredicted branch as in conventional recovery.

6.6 Servicing multiple branch mispredictions

TCI supports servicing new mispredictions concurrently with the one being serviced, if

the new mispredictions are logically after the repair rename map. A new misprediction will

begin servicing when the repair rename map logically reaches it, in a natural continuation of

127

RXB reconstruction. After fetching the correct CD instructions of the new misprediction,

CIDD instructions of both the initial and new mispredictions are reinjected concurrently. If a

new misprediction is logically before the repair rename map, we wait until the initial RXB

reconstruction completes before servicing the new misprediction; however, an earlier

misprediction that has not reconverged is serviced immediately via conventional recovery.

6.7 Store and load queues

Stores and loads issue out-of-order in the pipeline. The memory dependence predictor

(e.g. store sets (Chrysos, et al., 1998)) is a speculative optimization to enable some loads to

issue speculatively yet confidently. Ultimately, memory dependencies between loads and

stores are enforced by the load/store queue (LSQ). A traditional LSQ needs to maintain order

between all stores and loads for correct store-load forwarding and load violation detection.

Hence, the order of the LSQ must be repaired when exploiting control independence to

recover from a branch misprediction, since loads and stores may be removed and inserted in

the middle of the window.

The LSQ can be repaired by leveraging the same reconstruction technique used to adjust

the RXB after a branch misprediction. The modified LSQ would need its own TB to assist in

shifting the loads and stores into their new locations. In addition, the modified LSQ would

need its own indirection table (IT). The IT is necessary to insulate loads and stores in the

pipeline from the LSQ repair process. Repairing the order of the LSQ in this way may

degrade the performance of the system. The LSQ holds many more instructions than the

compressed RXB, which could extend the branch misprediction recovery process. To

overcome this problem, we need to reduce the time needed to repair the LSQ.

128

Fortunately, many processors implement the ordered LSQ as two separate ordered

queues: a store queue (SQ) and a load queue (LQ). Order between the two queues is

maintained using pointers. Each LQ entry knows which entry in the SQ it is logically after.

Each SQ entry knows which entry in the LQ it is logically after. This separation allows

repairing the LSQ twice as fast, since both the SQ and the LQ are repaired in parallel.

However, this implementation also requires us to split both the TB and IT into two structures,

one for the SQ and another for the LQ. The SQ indirection table (SQ-IT) insulates the LQ

entries’ pointers from changes during SQ reconstruction. Therefore, pointers in the LQ

entries point to the SQ-IT instead of the SQ entries directly. This function is also carried out

by the LQ indirection table (LQ-IT) to insulate the SQ entries’ pointers from changes during

LQ reconstruction.

The main reason for separating the SQ from the LQ is due to the different functions they

perform. The SQ has two main functions: forwarding memory values to loads and

committing stores to the cache in program order. On the other hand, the main function of the

LQ is to detect memory dependence violations due to the possibility of a load receiving a

wrong value. This separation leads to higher efficiency since we avoid accessing a large

unified LSQ when accessing one of the smaller queues is sufficient. Note, the SQ needs to be

fast (the store-load forwarding function) as it affects the performance of the processor;

however, the LQ is only needed to guarantee correctness which is not as time sensitive.

We observe that to fulfill all the requirements of the LSQ, order only needs to be

maintained between store instructions and between store and load instructions. Order

between load instructions is not required. Relaxing the order between load instructions

129

enables us to design a more efficient LSQ that is compatible with control independence. We

propose using a partially ordered LSQ (POLSQ), which is the combination of an ordered SQ

and an unordered LQ to achieve this objective. Figure 34 shows an example of how loads

and stores would be organized in an ordered unified LSQ, a split ordered SQ and ordered LQ,

and our new POLSQ. Notice that loads are only ordered with respect to stores in the POLSQ.

Figure 34. Example showing the relationship between stores and loads in the LSQ:

(a) Ordered unified LSQ. (b) Ordered split SQ/LQ. (c) Partially ordered LSQ.

In the POLSQ, the SQ will preserve the correct program order required for both store-

load data forwarding and committing stores to the cache in order. Hence, the SQ needs to be

reconstructed during branch misprediction recovery. This is achieved via the store queue

temporary buffer (SQ-TB) for recirculating the SQ entries and the store queue indirection

table (SQ-IT) to insulate in-flight stores in the pipeline and pointers in the unordered LQ

Ld 0x4

Ld 0x8

St 0x0

Ld 0x0

St 0x8

St 0x4

Ld 0xa

St 0xa

St 0x8

Branch

D
yn

am
ic

 in
st

ru
ct

io
n

or
de

r

F:

E:

D:

C:

B:

A:

L:

K:

I:

G:

ReconvJ:

Ld 0x0H:

D

B

A

K

I

F

E

C

L

H

Ordered
SQ

Ordered
LQ

E

C

L

D

B

A

K

I

Ordered
SQ

Unordered
LQ

I

H

F

C

B

A

E

D

L

K

Ordered
LSQ

(a) (b) (c)

F

H

130

from SQ changes. Entries in the unordered LQ will only preserve order with respect to stores

using the store pointers (SQ-IT index) in each LQ entry. The LQ no longer needs to be

reconstructed after a branch misprediction since it is unordered. Therefore, it no longer needs

the load queue temporary buffer (LQ-TB) or the load queue indirection table (LQ-IT).

Figure 35 shows the POLSQ structures in more detail. In addition, the content of the

structures reflects the example in Figure 34. Elements with gray borders are additions to a

conventional ordered split SQ/LQ design. Similar to the ordered split SQ/LQ design, both the

unordered LQ and ordered SQ have an address CAM port for matching on addresses. Note,

the address CAM port of the unordered LQ does not provide ordering information. Order is

determined indirectly leveraging the SQ order. In the POLSQ, the unordered LQ also has an

additional CAM port for matching on the SQ-IT index. This CAM port is used to free entries

in the LQ either due to committing these instructions or due to squashing instructions as part

of branch misprediction recovery. Notice, the SQ also contains the branch and reconvergent

point instructions. These additional instructions are needed to be able to reconstruct the SQ

correctly after a branch misprediction.

In the POLSQ, store-load forwarding is very similar to the conventional ordered split

ordered SQ/LQ design. In both designs, the load instruction accesses the ordered SQ and

performs a search on all stores logically before the load for a matching address. If one or

more stores match the load’s address, then the value of the youngest store (closest to the

load) is forwarded to the load. However, if no store address matches then the value is loaded

from the data cache. POLSQ requires an additional step before performing store-load

forwarding. The SQ-IT is accessed using the load’s SQ-IT index to find the store entry (SQ

131

index) to search before. This extra step is a consequence of using the SQ-IT to insulate loads

from the possible shifting of SQ entries.

Figure 35. Structures of the POLSQ (excluding SQ-TB), with contents corresponding to

the running example.

Figure 36 gives an example of store-load forwarding using POLSQ. When a load

instruction (E in this example) computes its address, the store-load forwarding process is

initiated. The first step involves accessing the SQ-IT with instruction E’s buffered index (SQ-

IT index = 6). This produces the current SQ index that the load is logically after in the SQ

(SQ index = 2). The second step uses the computed address of the load (0x8) to find stores

with a matching address in the SQ, and uses the SQ index from step 1 to find the closest prior

matching store instruction. In this example, we notice that two store instructions match on the

address of the load (store B and store I), but only one of the stores is actually before the

Store
addr

K: 0xa

J: Rec

D: 0x0

B: 0x8

A: 0x4

Load
addr

E: 0x8

H: 0x0

F: 0x4

C: 0x0

Ordered Store
Queue (SQ)

Unordered Load
Queue (LQ)

SQ
index

2

1

6

SQ indirection table
(SQ-IT)

SQ-IT
index

6

4

6

2

==

Address CAM port:
detect memory violations

SQ-IT index CAM port:
free/squash LQ entries

SQ-IT
index

0

6

2

7

6

5

2

1

0

In
de

x

=

Address CAM port:
memory forwarding

I: 0x8

G: BrL: 0xa

3

0 4

4

3

7

6

5

2

1

0

In
de

x

4

3

7

6

5

2

1

0

In
de

x

4

3

132

load’s SQ index (store B). Hence, the load will be forwarded the value of the store instruction

B.

Figure 36. Store-load forwarding using the POLSQ.

Since loads execute speculatively with respect to prior unresolved stores, memory

dependence violations may occur leading to incorrect program execution. Detecting and

recovering from load violations is required for correct execution. Load violations are

detected by comparing completed store addresses against the load queue. If the address of a

completed store matches the address of any load in the LQ, then a violation may have

occurred. However, since the LQ is unordered, additional steps are needed to verify a load

violation has occurred. This is accomplished by comparing the order of the potentially

offending loads to the order of the store. First, the potentially offending loads will access the

SQ-IT, to determine their current logical positions in the SQ. The SQ indices are then used to

confirm or dismiss the potential violations. Loads located before the store are false

violations. However, loads located after the store are true violations needing recovery.

Store
addr

K: 0xa

J: Rec

D: 0x0

A: 0x4

Load
addr

E: 0x8

H: 0x0

F: 0x4

C: 0x0

SQLQ
SQ

index

1

6

SQ-IT
SQ-IT
index

6

4

6

2

==

SQ-IT
index

0

6

7

6

5

2

0

In
de

x

=

I: 0x8

G: BrL: 0xa

3

0 4

4

3

7

5

2

1

0

In
de

x

4

3

7

6

5

2

1

0

In
de

x

4

3

Trigger

26

B: 0x8 21

Step
1

Step
2

Step
2'

0x8

133

Figure 37 gives an example of detecting a memory dependence violation using the

POLSQ. Assume that all loads in the LQ have executed speculatively. When store A

computes its address, this triggers the need to check for possible memory dependence

violations. The first step is to search the LQ for any load addresses that match the store’s

address (0x4). The search shows that load instruction F is a match and, hence, a potential

violation. Next, we try to confirm the exception. The second step is to access the SQ-IT to

determine the load’s current location in the SQ (SQ index = 2). Finally, in the third step, we

compare the load’s SQ index with the store’s SQ index. We find that the load instruction F is

after the store instruction A. Therefore, the violation of load instruction F is confirmed and

we need to recover to ensure correct execution.

Figure 37. Detecting a memory dependence violation using the POLSQ.

POLSQ entries are freed at retirement or during branch misprediction recovery. The

ordered SQ frees its entries in program order at retirement or from the middle of the SQ as

part of the SQ reconstruction. On the other hand, the LQ is unordered and relies on the SQ to

Store
addr

K: 0xa

J: Rec

B: 0x8

A: 0x4

Load
addr

E: 0x8

H: 0x0

C: 0x0

SQLQ
SQ

index

1

6

SQ-IT
SQ-IT
index

6

4

2

==

SQ-IT
index

0

2

7

6

5

1

0

In
de

x

=

I: 0x8

G: BrL: 0xa

3

0 4

4

3

7

5

2

1

0

In
de

x

4

3

7

6

5

1

0

In
de

x

4

3

F: 0x4 62

26

Step
2

Step
3

D: 0x0 62

Step
1

0x4

Trigger

134

free its entries. When a SQ entry is freed (either at retirement or during branch misprediction

recovery), the SQ entry’s SQ-IT index is broadcasted to the LQ, freeing matching LQ entries.

Note, when the SQ is empty (i.e., the window does not contain any branches, reconvergent

points, or stores), dispatched loads are not inserted into the LQ. These loads are guaranteed

not to cause load violations and require no store-load forwarding.

6.8 Branch-sets and CIDD loads

Loads issue speculatively and memory dependence violations are detected via the

POLSQ. A memory dependence predictor (store-set predictor (Chrysos, et al., 1998)) is used

to stall some loads when a predicted conflicting store is in the window. This reduces memory

dependence violations.

A conventional store-set predictor works for stores currently in the window.

Unfortunately, servicing a branch misprediction may change the stores in the window

(remove incorrect CD stores, insert correct CD stores, or re-execute some CIDD stores)

observed previously by the store-set predictor, possibly introducing memory dependence

violations.

To reduce memory dependence violations caused by changed stores in the window, we

introduce a new “branch-set” predictor. When the POLSQ detects a load violation, we

determine the mispredicted branch that influenced the conflicting store (the store is CD or

CIDD with respect to the branch). This is used to maintain branch-load dependence

information (branch-sets), i.e., the load is considered CIDD with respect to the branch via

memory dependencies. Hence, branches become proxies for potentially conflicting stores that

they influence, whether the stores are currently in the window or not.

135

When a load is dispatched, the branch-set predictor will predict if there are or will be any

potentially conflicting stores in the window – whether current CD stores, potential late CD

stores, or current CIDD stores that may re-execute – and marks the load as being a CIDD

load. Predicted CIDD loads and their dependents are then copied into the RXB like normal

CIDD instructions. When a mispredicted branch is serviced, its CIDD loads will be re-

injected into the pipeline, allowing them the opportunity to re-access the store-set predictor

as part of memory disambiguation.

6.9 Load violation recovery

The processor must detect and recover from load violations. Load violations are detected

by the POLSQ and indicate failures by the branch-set and store-set predictors.

Although CIDD loads are present in the RXB for an orthogonal reason (to allow them

the opportunity to re-access the store-set predictor after a branch misprediction, as described

in Section 6.8), violating CIDD loads are in the RXB and can take advantage of the RXB’s

selective recovery capabilities to efficiently recover from their violations. To do so, the

violating CIDD loads are simply re-injected into the pipeline along with their dependent

instructions. Notice that the RXB is a general selective re-execution mechanism that can

cover any loads if we choose to insert arbitrary loads and their dependents into the RXB.

On the other hand, violating CIDI loads cannot selectively recover, since they are not

present in the RXB. Recovering from CIDI load violations is delayed until retirement (to

avoid servicing a speculative load violation), at which point the entire pipeline is flushed, the

same as an exception.

136

6.10 Reconvergence predictor misinformation

The reconvergence predictor may provide a flawed reconvergent PC, incomplete IRS, or

misleading CD path length for a branch. Inaccuracies are detected when fetching CD

instructions of the branch. If inaccurate information is detected during the first pass through

the CD region, it can be amended. If detected during the second pass (repairing mispredicted

branch), it is handled by forgoing control independence. We call the latter “downgrades”

(downgrade to conventional recovery). The frequency of downgrades is reported in results.

An incomplete IRS is detected by observing logical destination registers that are not

specified in the IRS. If in the first pass, the IRS can be updated so that it is more accurate

when poisoning begins at the reconvergent point. However, if in the second pass, we know

that the branch’s CIDD instructions in the RXB are not sufficient: some needed CIDD

instructions were not poisoned earlier due to the incomplete IRS.

Flaws in a branch’s predicted reconvergent PC or maximum CD path length are

detectable when the branch does not reconverge within the maximum number of allowable

CD instructions. If in the first pass, it is handled by popping the CFS top-of-stack, implicitly

merging the branch with its encompassing branch which may have better luck reconverging.

If in the second pass, the branch downgrades to conventional recovery.

137

Table 7. Benchmark statistics and Base/Perfect results.

Benchmarks
L2 load miss/1k

instructions
Branch misp.

/1k instructions
Base IPC Perfect %IPC improvement

4-issue 8-issue 4-issue 8-issue

Base TCI Base TCI IQ32 IQ64 IQ32 IQ64 IQ32 IQ64 IQ32 IQ64

bzip2-program-ref 2.73 2.74 12.74 12.17 1.57 1.60 1.83 1.91 115% 124% 168% 208%
compress95-bigtest-ref 0.31 0.31 10.01 9.92 1.60 1.62 1.80 1.89 98% 120% 119% 171%
crafty-ref 0.06 0.06 5.67 6.17 2.41 2.43 3.11 3.33 55% 61% 81% 108%
gap-ref 0.99 1.04 2.18 2.27 2.86 2.95 3.62 3.96 20% 24% 26% 33%
gcc-expr-ref 0.11 0.12 4.99 5.60 2.36 2.38 3.02 3.13 46% 50% 66% 81%
go95-5stone21-ref 0.02 0.02 20.65 21.21 1.21 1.21 1.32 1.33 186% 205% 254% 342%
gzip-graphic-ref 0.73 0.73 10.42 10.56 1.63 1.64 1.89 1.94 102% 113% 128% 178%
ijpeg95-specmun-ref 0.63 0.63 4.67 4.83 2.51 2.54 3.37 3.59 42% 44% 66% 76%
li95-ref 0.00 0.00 5.24 6.42 2.42 2.45 3.05 3.22 52% 59% 79% 96%
mcf-ref 128.13 128.87 5.02 4.75 0.10 0.10 0.10 0.11 1% 2% 1% 1%
parser-ref 0.04 0.04 7.69 7.66 1.75 1.85 1.99 2.19 53% 71% 61% 90%
perlbmk-diffmail-ref 0.04 0.04 2.34 2.40 2.97 3.00 4.21 4.45 25% 28% 38% 46%

twolf-ref 0.02 0.03 13.43 16.59 1.36 1.41 1.49 1.58 86% 116% 101% 149%
vortex-two-ref 0.97 0.99 0.29 0.30 3.54 3.63 5.18 5.66 3% 3% 4% 5%

vpr-route-ref 5.48 6.91 9.98 9.62 1.18 1.24 1.32 1.44 73% 95% 73% 97%

Figure 38. Performance improvement for 4-issue pipeline.

Figure 39. Performance improvement for 8-issue pipeline.

-20%
-10%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

bzip compress crafty gap gcc go gzip ijpeg li mcf p arser perl twolf vortex vpr

%
 IP

C
 im

pr
ov

em
en

t o
ve

r b
as

e Drain IQ32

Drain IQ64

-20%
-10%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

P
ro

xy
S

eq
 C

I
T

C
I

bzip compress crafty gap gcc go gzip ijpeg li mcf p arser perl twolf vortex vpr

%
 IP

C
 im

pr
ov

em
en

t o
ve

r b
as

e Drain IQ32

Drain IQ64

138

6.11 Results

We present performance results for five models: Base, Proxy, Seq CI, TCI, and Perfect

(the baseline with perfect branch prediction). Proxy, Seq CI, and TCI leverage the Drain IQ

re-execution substrate (see Section 5.2.3). Table 7 shows the IPCs for Base for 4-issue and 8-

issue pipelines with 32-entry and 64-entry issue queues. IPC improvement of Perfect over

Base is also shown in Table 7.

6.11.1 Performance and analysis

Figure 38 shows the performance improvement of the various models over Base, for 4-

issue pipelines with 32-entry and 64-entry issue queues. The 64-entry issue queue results are

shown as error bars with respect to the 32-entry bars. TCI improves IPC by up to 61% (64%)

over Base with a 32-entry (64-entry) issue queue. The average IPC improvement of TCI over

Base, across all benchmarks, is 16% for both issue queue sizes.

Figure 39 shows corresponding IPC improvements over Base for 8-issue pipelines. The

maximum improvement of TCI over Base increases to 78% (88%) for a 32-entry (64-entry)

issue queue, as the opportunity cost of mispredictions is higher for the wider pipeline. On

average, TCI achieves 20% (22%) IPC improvement over Base for a 32-entry (64-entry)

issue queue.

TCI consistently and significantly outperforms Seq CI, making clear that resequencing

all CI instructions after a misprediction does not fully capitalize on control independence

opportunity. Furthermore, as a consequence of limiting the window to the size of the RXB,

Seq CI degrades performance on some benchmarks with respect to the ROB-free Base.

139

Proxy is not resource efficient. As seen in Figure 38 and Figure 39, for the 32-entry issue

queue, TCI outperforms Proxy in all benchmarks. In some benchmarks (e.g., li, vpr), Proxy

degrades with respect to Base as a result of issue queue pressure caused by proxy and CIDD

instructions. The average gain for Proxy drops from 11% to 6% on a 4-issue pipeline when

the issue queue size is reduced from 64 to 32. In contrast, TCI and Seq CI are less sensitive to

the issue queue size.

To understand the performance improvements of TCI, we refer to measurements in

Table 7 (L2 load misses per 1000 instructions, branch mispredictions per 1000 instructions)

and Figure 40. The latter provides a breakdown of branch mispredictions. Some

mispredictions are not covered because they have a maximum CD path length that exceeds

our chosen threshold of 256 (Non-CI Br) or they resolve before reconverging. For some

mispredictions, control independence is attempted (CI Br) but it fails due to downgrade

scenarios, two of which are (i) incomplete IRS (IRS downgrade) and (ii) exceed temp buffer

(TB downgrade) thereby preventing RXB expansion. Control independence cannot be

exploited in these cases. Due to this, in some benchmarks where branch misprediction rates

are fairly high, Perfect shows great promise but TCI cannot exploit enough control

independence resulting in more modest performance gains (e.g., bzip, compress).

140

Figure 40. Breakdown of branch mispredictions.

To not artificially favor misprediction-tolerance, we chose the high quality perceptron

predictor (Jimenez, et al., 2001). Notice in Table 7 branch misprediction rates for TCI are

typically higher than for Base. This is mainly due to gaps in global history (branches in

mispredicted CD regions are omitted from global history used by future branches). We found

the perceptron predictor to be relatively more resilient to history gaps than gshare. Further,

TCI can tolerate some extra mispredictions.

We analyze the 64-entry issue queue results by grouping benchmarks based on branch

misprediction rates (Table 7) and control independence coverage (CI coverage) (Figure 40):

� Group A (bzip, compress, go, gzip, twolf, and vpr): High misprediction frequency (9

to 21/1K inst.). Gzip and twolf post significant speedups due to high CI coverage

(92% and 83%): 64% and 52% on 4-issue, and 88% and 64% on 8-issue. Go posts a

medium speedup: 30% for 4-issue and 35% for 8-issue. Though it has the highest

branch misprediction frequency, benefits are limited by medium CI coverage (64%),

leaving about 7.6 mispredictions uncovered per 1000 instructions. For bzip,

compress, and vpr, CI coverage is moderate (54%, 54%, and 40%), leading to

0%

20%

40%

60%

80%

100%

bz
ip

co
m

pr
es

s

cr
af

ty

ga
p

gc
c go

gz
ip

ijp
eg

li

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

%
 o

f b
r m

is
pr

ed
ic

tio
ns

CI Br successful
CI Br + TB downgrade
CI Br + IRS downgrade
Non-CI Br

141

moderate speedups: 7%, 11%, and 14% for 4-issue, and 7%, 14%, and 19% for 8-

issue.

� Group B (crafty, gcc, ijpeg, li, and parser): Moderate misprediction frequency (4 to

8/1K inst.). For crafty, gcc, ijpeg, and parser, CI coverage is medium to high (55%-

88%), yielding modest speedups: 11%, 10%, 28%, and 11% on 4-issue, and 17%,

12%, 45% and 12% on 8-issue. Li shows low speedups (1-3%) due to its low CI

coverage (37%). In li, most mispredicted branches resolve before fetching their

reconvergent points.

� Group C (gap, perl, and vortex): Low misprediction frequency (less than 3/1K inst.).

Group C does not benefit from TCI due to excellent accuracy in the simulated

regions, yielding performance close to Perfect.

� Group D (mcf): Moderate misprediction frequency, but very high L2 miss rate. For

mcf, the simulated region is dominated by a high frequency of serialized L2 misses,

as shown in the second column of Table 7. Despite high CI coverage (81%), the

penalty of branch mispredictions is masked since they occur in the shadow of L2

misses. This is confirmed by the negligible gains for Perfect.

6.11.2 Instruction breakdown

Figure 41 characterizes retired instructions in the context of branch mispredictions. SBM

(“shadow of branch misprediction”) refers to control independent instructions that are

logically in the window when a prior misprediction is detected. (In TCI, these are preserved

whereas Base squashes and re-fetches them.) In contrast, instructions before mispredictions

or instructions fetched after a misprediction has initiated servicing, are not considered to be

142

in the shadow of a branch misprediction (Non-SBM). SBM instructions represent control

independence opportunity, Non-SBM do not.

Figure 41. Breakdown of all instructions.

SBM instructions are broken down further into those that were inserted into the RXB

(CIDD) and those that were not (CIDI). Among those that were inserted into the RXB, we

indicate if they had to be reinjected (CIDD reinject) or not (CIDD no-reinject). SBM+CIDD

reinject occurs when the instruction is CIDD with respect to the mispredicted branch (must

re-execute). SBM+CIDD no-reinject occurs when the instruction is not CIDD with respect to

the mispredicted branch, but rather a different correctly predicted branch. Thus, SBM+CIDD

no-reinject is tantamount to SBM+CIDI with respect to the misprediction.

Summing up, the top two classes in Figure 41 (SBM+CIDD no-reinject, SBM+CIDI)

represent savings compared to conventional (full) recovery. Benchmarks in Group A and

Group B have the largest percentages of these misprediction-independent instructions (7%-

33% for Group A and 4%-11% for Group B). Their speedups in Figure 38 and Figure 39

correlate well with their percentages of saved instructions.

0%

20%

40%

60%

80%

100%

bz
ip

co
m

pr
es

s

cr
af

ty

ga
p

gc
c go

gz
ip

ijp
eg

li

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

%
 o

f i
ns

tru
ct

io
ns

SBM + CIDI
SBM + CIDD no-reinject
SBM + CIDD reinject
Non-SBM

143

6.11.3 Branch prediction and branch misprediction servicing policies

When using conventional branch recovery, all CI instructions after the branch are

squashed are re-fetched. During re-fetching, the CI branches are re-predicted with a repaired

global history register (GHR) that reflects the corrected branch and new branches in its

correct CD region. This process may overturn some initial predictions, eliminating some

branch mispredictions in the re-fetched CI region. On the other hand, control independence

implementations keep CI instructions in the window after detecting a branch misprediction;

hence, CI branches do not get to be predicted with the repaired GHR. This may introduce

additional branch mispredictions in control independence implementations compared to

conventional processors. To avoid these additional branch mispredictions, we choose a

branch predictor that is somewhat tolerant of an incomplete GHR. In our studies, we have

found that the perceptron branch predictor is superior to the gshare branch predictor in its

tolerance to the imperfect GHR. Hence, we incorporate the perceptron branch predictor in all

our runs. In addition, while reconstructing the RXB, we re-predict branches that have not

been truly resolved yet (i.e., branches in the RXB). This allows us to mimic the branch re-

prediction process in conventional processors and detect possible mispredictions early

(Rotenberg, et al., 1999).

In conventional processors, mispredicted branches are serviced immediately once their

outcomes are known. This leads to the highest performing implementation. This is not

always true in control independence implementations. Since CI branches may execute

multiple times with incorrect source operands from earlier branch mispredictions, it may be

better to wait until the source operands are truly stable (CIDI) before servicing the confirmed

144

branch misprediction. Hence, we are faced with either allowing branches to execute

speculatively with whatever data they have, with the threat of false mispredictions

(Rotenberg, et al., 1999), or delaying their execution until we can verify that their sources are

correct (the poison vector is clear).

In TCI, we found that the best combination happens to be (1) allowing branches to

execute speculatively and (2) only re-predicting branches that have not executed or that have

executed with unconfirmed data. In Figure 42, we present results for four models. The first

does not service branches speculatively and does not re-predict branches at all (TCI:). The

second only allows branches to be serviced speculatively (TCI: Spec. Br service). The third

only re-predicts branches that have not executed or have executed with unconfirmed data

(TCI: Repredict Br). The fourth services branches speculatively and re-predicts branches that

have not executed or that executed with unconfirmed data (TCI: Spec. Br service + Repredict

Br).

Servicing branches speculatively improves performance most of the time, as can be seen

in the harmonic mean IPC presented in Figure 42(d). However, it degrades performance in

some benchmarks, such as gap and li. Branch re-prediction improves performance in all

benchmarks except compress, where there is a slight degradation. Using both these

techniques together further improves performance. The two techniques can be combined,

resulting in higher performance than using either technique separately.

145

(a)

(b)

(c) (d)

Figure 42. Branch prediction and branch misprediction servicing policies.

6.11.4 Memory dependence predictor

In TCI and other control independence implementations, predicting memory

dependencies faces additional challenges. Unlike processors with conventional branch

misprediction recovery, control independence implementations have to deal with holes in the

middle of the window caused by branch mispredictions. These holes may introduce wrong

store instructions from the wrong CD region or delay correct stores from the correct CD

region. Normal memory dependence predictors are not designed to deal with these holes in

the instruction window.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

bzip compress crafty gap gcc

IP
C

TCI:
TCI: Spec. Br service
TCI: Repredict Br
TCI: Spec. Br service + Repredict Br

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

go gzip ijpeg li mcf

IP
C

TCI:
TCI: Spec. Br service
TCI: Repredict Br
TCI: Spec. Br service + Repredict Br

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

parser perl twolf vortex vpr

IP
C

TCI:
TCI: Spec. Br service
TCI: Repredict Br
TCI: Spec. Br service + Repredict Br 0.0

0.5

1.0

1.5

2.0

2.5

Harmonic mean -
excluding mcf

Harmonic mean Harmonic mean -
high br. misp. rate

IP
C

TCI:
TCI: Spec. Br service
TCI: Repredict Br
TCI: Spec. Br service + Repredict Br

146

In this section, we investigate different memory dependence predictors and their impact

on the performance of TCI. The first predictor is conservative and chooses to stall all load

instructions until all prior stores have computed their addresses (Always stall). The second

predictor allows loads to bypass unresolved stores, but if any load causes a memory

violation, then, for the remainder of execution, this load will have to stall until all prior stores

have computed their addresses (Only stall violation). The third predictor is very aggressive

and allows all loads to bypass unresolved stores freely. The next two predictors are based on

the store-set predictor that monitors relationships between stores and loads. The basic store-

set predictor is studied (Store sets), as well as a modified store-set predictor that adds

branches to the store0set predictor (Store/Branch sets). The intuition behind this modification

is that branches act as proxies for stores in their CD region. Hence, a branch can give future

loads hints on which stores may be fetched in the future, if this happens to be a mispredicted

branch.

Figure 43 shows IPC results of the TCI architecture with different memory dependence

predictors. Figure 43(a)-(c) give the results of individual benchmarks, whereas Figure 43(d)

shows the harmonic mean IPC results. Notice that predictors based on the store-set predictor

outperform the basic predictors in all benchmarks except bzip, li, and vpr. We also notice that

the branch-set enhancement further improves on the performance of the base store-set

predictor, on average. For individual benchmark results, we notice that all benchmarks

except bzip and vpr see an improvement.

147

(a)

(b)

(c)

(d)

Figure 43. Memory dependence predictors.

6.11.5 Sensitivity to the number of checkpoints and poison vector bits

TCI leverages the checkpoint tags to identify branches covered by control independence.

The more checkpoints allocated to the processor, the higher the branch misprediction

coverage and, hence, higher potential performance.

Figure 44 shows the IPC results of the TCI architecture with 4, 8, 16, and 32

checkpoints. Figure 44(a)-(c) give the results of individual benchmarks, whereas Figure

43(d) shows the harmonic mean IPC results. The results show that increasing the number of

checkpoints helps performance. In addition, the performance starts to saturate with 16

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

bzip compress crafty gap gcc

IP
C

Always stall
Only stall violation
Never stall
Store sets
Store/Branch sets

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

go gzip ijpeg li mcf

IP
C

Always stall
Only stall violation
Never stall
Store sets
Store/Branch sets

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

parser perl twolf vortex vpr

IP
C

Always stall
Only stall violation
Never stall
Store sets
Store/Branch sets 0.0

0.5

1.0

1.5

2.0

2.5

Harmonic mean -
excluding mcf

Harmonic mean Harmonic mean -
high br. misp. rate

IP
C

Always stall
Only stall violation
Never stall
Store sets
Store/Branch sets

148

checkpoints. In vpr, we notice that TCI with 16 checkpoints outperforms TCI with 32

checkpoints. Analyzing the data gathered from the two runs, the reason for this degradation is

a higher branch misprediction rate. By covering additional branch mispredictions in vpr, we

worsen the accuracy of the branch predictor (possibly due to corrupting the GHR more with

32 checkpoints then with 16 checkpoints).

(a) (b)

(c) (d)

Figure 44. TCI IPC results with varying number of checkpoints.

0

1

2

3

4

bzip compress crafty gap gcc

IP
C

4 Checkpoints

8 Checkpoints

16 Checkpoints

32 Checkpoints
0

1

2

3

4

go gzip ijpeg li mcf

IP
C

4 Checkpoints

8 Checkpoints

16 Checkpoints

32 Checkpoints

0

1

2

3

4

parser perl twolf vortex vpr

IP
C

4 Checkpoints

8 Checkpoints

16 Checkpoints

32 Checkpoints 0

1

2

3

4

Harmonic mean -
excluding mcf

Harmonic mean Harmonic mean -
high br. misp. rate

IP
C

4 Checkpoints

8 Checkpoints

16 Checkpoints

32 Checkpoints

149

6.11.6 Sensitivity to the number of CFSs and to IRS optimizations

TCI leverages the CFS to detect the reconvergence of branches. Initially, the leading

sequencer pushes the reconvergent PCs of fetched branches onto the CFS. When the

reconvergent PC of a branch is fetched, the CFS detects reconvergence and the process of

copying the CIDD instructions into the RXB is commenced. During branch misprediction

recovery, the newly fetched CD region may itself contain internal control-flow. To be able to

detect inner reconvergent points, we leverage a second CFS that is devoted to the repair

rename map. Without this second CFS, the internal branches would need to rely on the

original reconvergent point, which may not be optimal since it is a distant reconvergent point

for these branches.

In this section, we first investigate the effect of using the CFS only with the speculative

rename map versus allocating an additional CFS for the repair rename map. Second, we look

at the effect of using IRS optimizations discussed in Section 4.3.1.4 on performance.

Figure 45 shows the IPC results of the TCI architecture with one or two CFSs. For both

models, we study the effect of using an unoptimized IRS or an optimized IRS. Figure 45(a)-

(c) give the results of individual benchmarks, whereas Figure 45(d) shows the harmonic

mean IPC results. From the results, we can conclude that, on average, both multiple CFSs

and an optimized IRS improve the performance of TCI. However, some benchmarks show

different trends. For example, twolf only benefits from using multiple CFSs and not from

using the optimized IRS. On the other hand, gap only benefits from using an optimized IRS.

150

(a) (b)

(c) (d)

Figure 45. TCI IPC results with a single or multiple CFSs while using an optimized or

unoptimized IRS.

0

1

2

3

4

bzip compress crafty gap gcc

IP
C

single CFS + unoptimized IRS

single CFS + optimized IRS

multiple CFS + unoptimized IRS

multiple CFS + optimized IRS
0

1

2

3

4

go gzip ijpeg li mcf

IP
C

single CFS + unoptimized IRS

single CFS + optimized IRS

multiple CFS + unoptimized IRS

multiple CFS + optimized IRS

0

1

2

3

4

parser perl twolf vortex vpr

IP
C

single CFS + unoptimized IRS

single CFS + optimized IRS

multiple CFS + unoptimized IRS

multiple CFS + optimized IRS 0

1

2

3

4

Harmonic mean -
excluding mcf

Harmonic mean Harmonic mean -
high br. misp. rate

IP
C

single CFS + unoptimized IRS

single CFS + optimized IRS

multiple CFS + unoptimized IRS

multiple CFS + optimized IRS

151

6.12 Additional related work

We already compared and contrasted TCI with the following control independence

architectures in Chapter 5 and, in the interest of space, that discussion is not repeated here:

speculative multithreading architectures such as Multiscalar (Sohi, et al., 1995) and DMT

(Akkary, et al., 1998), trace processors (Rotenberg, et al., 1999), and superscalar based

implementations including instruction reuse (Sodani, et al., 1997), dual ROBs (Chou, et al.,

1999), Skipper (Cher, et al., 2001), exact convergence (Gandhi, et al., 2004), and a generic

implementation (Rotenberg, et al., 1999).

ReSlice (Sarangi, et al., 2005) uses slice re-execution to selectively recover from data

misspeculation. Correct repair is guaranteed by checking for sufficient slice conditions. In

general, ReSlice is designed for any data misspeculation handling including control-flow

influenced data misspeculation, but it was studied only for thread-level speculation (TLS).

ReSlice aborts slice re-execution if there are branches (whether in the slice or not) that

change the slice’s instructions. As we illustrated with the example in Section 6.3.1 of two co-

mingled CIDD slices, RXB reconstruction allows slices to change, moreover, the co-mingled

slices can resequence in any order, with correct results.

The continual flow pipeline (CFP) (Srinivasan, et al., 2004) is related to our work in that

CFP takes an analogous approach for releasing resources of L2 miss dependent instructions.

However, CFP does not exploit control independence.

152

Chapter 7

Summary and future work

In this thesis, we investigated two main claims. First, we compared different branch

misprediction tolerance techniques qualitatively and quantitatively, including multipath,

static/dynamic predication, skip-based control independence (CI-skip), and speculation-based

control independence (CI-speculate). As a result of this comparison, we claim that CI-

speculate is the best-performing branch misprediction tolerance technique on a processor

with realistic resources. The chief reason is that CI-speculate does not penalize correctly

predicted branches and, hence, complements the branch predictor.

Second, we analyzed the strengths and weaknesses of different CI-speculate models,

including Proxy, Seq CI, and Seq CIDD, in the context of a high-performance checkpoint-

based substrate compatible with control independence. We showed that Seq CIDD combines

the resource efficiency of Seq CI and the bandwidth efficiency of Proxy, while eliminating

their disadvantages.

Finally, we presented Transparent Control Independence (TCI), a new microarchitecture

that implements the Seq CIDD model. By proactively identifying CIDD instructions in

preparation for a branch misprediction, TCI only re-renames CIDD instructions and only

reallocates resources to CIDD instructions when recovery is needed. Hence, TCI yields a

highly streamlined pipeline that quickly recycles resources based on conventional

speculation, enabling a large window with small cycle-critical resources, and prevents many

mispredictions from disrupting this large window by fetching a condensed and self-sufficient

recovery program.

153

This thesis has investigated the TCI microarchitecture in detail. However, many

interesting directions are left for future work.

• Overcome CI-speculate and CI-skip limitations: CI-speculate is limited by the

wasted bandwidth/resources consumed by the incorrect CD instructions. On the other

hand, CI-skip does not waste any bandwidth/resources on incorrect CD instructions,

at the expense of penalizing many correctly predicted branches. It is worthwhile

investigating new architectures that overcome both CI-speculate’s and CI-skip’s

limitations.

• Control independence aware compiler: Control independence can only tolerate

mispredicted branches with reconvergent points. There remains a subset of

mispredicted branches with no reconvergent points (no reconvergence information or

very large CD region). In addition, the performance of control independence is

dependent on the quality of the CI region (ratio of CIDI instructions to CIDD

instructions). The compiler can potentially increase the performance of control

independence by generating favorable code.

• Scalable performance: Branch mispredictions limit performance scalability of

control independence based superscalar processors by wasting resources and

bandwidth on incorrect CD instructions. Scaling the window size and issue width

does not result in proportional performance scaling. Implementing TCI on top of

Thread-level Speculation (TLS) may achieve scalability because TLS allocates some

resources and bandwidth to future CI instructions while still allocating resources and

bandwidth near the commit point (balancing CI-skip and CI-speculate). A drawback

154

of TLS is the inability to repair branches that have speculatively retired long ago, and

that depend on misspeculated loads. TCI can solve this by adding control-flow slices

to load recovery slices, e.g., overcoming weaknesses of ReSlice (Sarangi, et al.,

2005). TCI would provide load-induced control-flow misspeculation tolerance within

a large speculative thread and TLS would balance resources and bandwidth fairly

between near and distant threads. We believe this would lead to scalable

performance with resource scaling.

• Additional uses of the recovery program: One of the interesting contributions of the

TCI microarchitecture is the ability to repair the processor’s state after

misspeculation using a self-sufficient recovery program. This concept could be

extended to repair other types of speculation. In particular, I would like to investigate

the ability to speculate past page faults and then leverage a self-sufficient recovery

program to recover from any misspeculation.

155

Chapter 8

Bibliography

Ahuja Pritpal S [et al.] Multipath execution: opportunities and limits [Conference] // ICS
’98: Proceedings of the 12th international conference on Supercomputing. - New York,
NY, USA : ACM Press, 1998. - pp. 101-108.

Akkary Haitham and Driscoll Michael A A dynamic multithreading processor
[Conference] // MICRO 31: Proceedings of the 31st annual ACM/IEEE international
symposium on Microarchitecture. - Los Alamitos, CA, USA : IEEE Computer Society
Press, 1998. - pp. 226-236.

Akkary Haitham, Rajwar Ravi and Srinivasan Srikanth T Checkpoint Processing and
Recovery: Towards Scalable Large Instruction Window Processors [Conference] //
MICRO 36: Proceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture. - Washington, DC, USA : IEEE Computer Society, 2003. - p. 423.

Allen J R [et al.] Conversion of control dependence to data dependence [Conference] //
POPL ’83: Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages. - New York, NY, USA : ACM Press, 1983. - pp. 177-189.

Al-Zawawi Ahmed S [et al.] Transparent control independence (TCI) [Journal] //
SIGARCH Comput. Archit. News. - New York, NY, USA : ACM Press, 2007. - 2 : Vol.
35. - pp. 448-459.

Ando Hideki [et al.] Unconstrained speculative execution with predicated state buffering
[Conference] // ISCA ’95: Proceedings of the 22nd annual international symposium on
Computer architecture. - New York, NY, USA : ACM Press, 1995. - pp. 126-137.

Bondi James O, Nanda Ashwini K and Dutta Simonjit Integrating a misprediction
recovery cache (MRC) into a superscalar pipeline [Conference] // MICRO 29:
Proceedings of the 29th annual ACM/IEEE international symposium on
Microarchitecture. - Washington, DC, USA : IEEE Computer Society, 1996. - pp. 14-23.

Burger Doug, Austin Todd M and Bennett Steve Evaluating Future Microprocessors:
The SimpleScalar Tool Set [Book]. - 1996.

Cher Chen-Yong and Vijaykumar T N Skipper: a microarchitecture for exploiting
control-flow independence [Conference] // MICRO 34: Proceedings of the 34th annual
ACM/IEEE international symposium on Microarchitecture. - Washington, DC, USA :
IEEE Computer Society, 2001. - pp. 4-15.

156

Chou Yuan, Fung Jason and Shen John Paul Reducing branch misprediction penalties
via dynamic control independence detection [Conference] // ICS ’99: Proceedings of the
13th international conference on Supercomputing. - New York, NY, USA : ACM Press,
1999. - pp. 109-118.

Chrysos George Z and Emer Joel S Memory dependence prediction using store sets
[Conference] // ISCA ’98: Proceedings of the 25th annual international symposium on
Computer architecture. - Washington, DC, USA : IEEE Computer Society, 1998. - pp.
142-153.

Collins Jamison D, Tullsen Dean M and Wang Hong Control Flow Optimization Via
Dynamic Reconvergence Prediction [Conference] // MICRO 37: Proceedings of the 37th
annual IEEE/ACM International Symposium on Microarchitecture. - Washington, DC,
USA : IEEE Computer Society, 2004. - pp. 129-140.

Cristal A [et al.] Large Virtual ROBs by Processor Checkpointing [Journal]. - 2002.

Cristal Adriá [et al.] Toward kilo-instruction processors [Journal] // ACM
Trans.Archit.Code Optim.. - 2004. - 4 : Vol. 1. - pp. 389-417.

Cristal Adrian [et al.] Out-of-Order Commit Processors [Journal] // hpca. - 2004. - Vol.
00. - p. 48.

Dubey Pradeep K [et al.] Single-program speculative multithreading (SPSM)
architecture: compiler-assisted fine-grained multithreading [Conference] // PACT ’95:
Proceedings of the IFIP WG10.3 working conference on Parallel architectures and
compilation techniques. - Manchester, UK, UK : IFIP Working Group on Algol, 1995. -
pp. 109-121.

Franklin Manoj and Sohi Gurindar S. ARB: A Hardware Mechanism for Dynamic
Reordering of Memory [Journal] // IEEE Trans.Computers. - 1996. - 5 : Vol. 45. - pp.
552-571.

Franklin Manoj The multiscalar architecture [Book]. - 1993.

Gandhi Amit [et al.] Scalable Load and Store Processing in Latency Tolerant Processors
[Journal] // isca. - 2005. - Vol. 00. - pp. 446-457.

Gandhi Amit, Akkary Haitham and Srinivasan Srikanth T Reducing Branch
Misprediction Penalty via Selective Branch Recovery [Journal] // hpca. - 2004. - Vol. 00. -
p. 254.

Gross Thomas R and Hennessy John L Optimizing delayed branches [Journal]. -
1982. - pp. 114-120.

Heil T and Smith J Selective dual path execution [Book]. - 1996.

157

Hennessy John [et al.] Hardware/software tradeoffs for increased performance
[Journal]. - 1982. - pp. 2-11.

Hennessy John [et al.] MIPS: A microprocessor architecture [Conference] // MICRO 15:
Proceedings of the 15th annual workshop on Microprogramming. - Piscataway, NJ, USA :
IEEE Press, 1982. - pp. 17-22.

Hilton Andrew D and Roth Amir Ginger: control independence using tag rewriting
[Journal] // SIGARCH Comput. Archit. News. - New York, NY, USA : ACM Press,
2007. - 2 : Vol. 35. - pp. 436-447.

Hwu W W and Patt Y N Checkpoint repair for out-of-order execution machines
[Conference] // ISCA ’87: Proceedings of the 14th annual international symposium on
Computer architecture. - New York, NY, USA : ACM Press, 1987. - pp. 18-26.

Jacobsen Erik, Rotenberg Eric and Smith J E Assigning confidence to conditional
branch predictions [Conference] // MICRO 29: Proceedings of the 29th annual
ACM/IEEE international symposium on Microarchitecture. - Washington, DC, USA :
IEEE Computer Society, 1996. - pp. 142-152.

Jimenez Daniel A and Lin Calvin Dynamic Branch Prediction with Perceptrons
[Conference] // HPCA. - 2001. - pp. 197-206.

Karkhanis T and Smith J A day in the life of a data cache miss [Book]. - 2002.

Kim Hyesoon [et al.] Diverge-Merge Processor (DMP): Dynamic Predicated Execution
of Complex Control-Flow Graphs Based on Frequently Executed Paths [Conference] //
MICRO 39: Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture. - Washington, DC, USA : IEEE Computer Society, 2006. - pp. 53-64.

Kim Hyesoon [et al.] Profile-assisted Compiler Support for Dynamic Predication in
Diverge-Merge Processors [Conference] // CGO ’07: Proceedings of the International
Symposium on Code Generation and Optimization. - Washington, DC, USA : IEEE
Computer Society, 2007. - pp. 367-378.

Kim Hyesoon [et al.] Wish Branches: Combining Conditional Branching and Predication
for Adaptive Predicated Execution [Conference] // MICRO 38: Proceedings of the 38th
annual IEEE/ACM International Symposium on Microarchitecture. - Washington, DC,
USA : IEEE Computer Society, 2005. - pp. 43-54.

Klauser A [et al.] Dynamic Hammock Predication for Non-Predicated Instruction Set
Architectures [Conference] // PACT ’98: Proceedings of the 1998 International
Conference on Parallel Architectures and Compilation Techniques. - Washington, DC,
USA : IEEE Computer Society, 1998. - p. 278.

158

Klauser Artur, Paithankar Abhijit and Grunwald Dirk Selective eager execution on
the PolyPath architecture [Conference] // ISCA ’98: Proceedings of the 25th annual
international symposium on Computer architecture. - Washington, DC, USA : IEEE
Computer Society, 1998. - pp. 250-259.

Lam Monica S and Wilson Robert P Limits of control flow on parallelism
[Conference] // ISCA ’92: Proceedings of the 19th annual international symposium on
Computer architecture. - New York, NY, USA : ACM Press, 1992. - pp. 46-57.

Lebeck Alvin R [et al.] A large, fast instruction window for tolerating cache misses
[Conference] // ISCA ’02: Proceedings of the 29th annual international symposium on
Computer architecture. - Washington, DC, USA : IEEE Computer Society, 2002. - pp. 59-
70.

Lee Johnny K and Smith Alan Jay Branch prediction strategies and branch target buffer
design [Journal]. - 1995. - pp. 83-99.

Lipasti Mikko Herman Value locality and speculative execution [Book]. - 1998.

Mahlke Scott A [et al.] A comparison of full and partial predicated execution support for
ILP processors [Conference] // ISCA ’95: Proceedings of the 22nd annual international
symposium on Computer architecture. - New York, NY, USA : ACM Press, 1995. - pp.
138-150.

Marcuello Pedro [et al.] Speculative multithreaded processors [Conference] // ICS ’98:
Proceedings of the 12th international conference on Supercomputing. - New York, NY,
USA : ACM Press, 1998. - pp. 77-84.

Martinez Jose F [et al.] Cherry: checkpointed early resource recycling in out-of-order
microprocessors [Conference] // MICRO 35: Proceedings of the 35th annual ACM/IEEE
international symposium on Microarchitecture. - Los Alamitos, CA, USA : IEEE
Computer Society Press, 2002. - pp. 3-14.

McFarling S and Hennesey J Reducing the cost of branches [Conference] // ISCA ’86:
Proceedings of the 13th annual international symposium on Computer architecture. - Los
Alamitos, CA, USA : IEEE Computer Society Press, 1986. - pp. 396-403.

Mirapuri Sunil, Woodacre Michael and Vasseghi Nader The Mips R4000 Processor
[Journal] // IEEE Micro. - 1992. - 2 : Vol. 12. - pp. 10-22.

Morano D [et al.] Realizing high IPC through a scalable memory-latency tolerant
multipath microarchitecture [Journal] // SIGARCH Comput.Archit.News. - 2003. - 1 :
Vol. 31. - pp. 16-25.

Moudgill Mayan, Pingali Keshav and Vassiliadis Stamatis Register renaming and
dynamic speculation: an alternative approach [Conference] // MICRO 26: Proceedings of

159

the 26th annual international symposium on Microarchitecture. - Los Alamitos, CA,
USA : IEEE Computer Society Press, 1993. - pp. 202-213.

Mutlu Onur [et al.] On Reusing the Results of Pre-Executed Instructions in a Runahead
Execution Processor [Journal] // IEEE Comput.Archit.Lett.. - 2005. - 1 : Vol. 4. - p. 2.

Olukotun Kunle [et al.] The case for a single-chip multiprocessor [Conference] //
ASPLOS-VII: Proceedings of the seventh international conference on Architectural
support for programming languages and operating systems. - New York, NY, USA : ACM
Press, 1996. - pp. 2-11.

Palacharla Subbarao, Jouppi Norman P and Smith J E Complexity-effective
superscalar processors [Journal]. - 1997. - pp. 206-218.

Park I, Ooi Chong Liang and Vijaykumar T N Reducing Design Complexity of the
Load/Store Queue [Conference] // MICRO 36: Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture. - Washington, DC, USA : IEEE Computer
Society, 2003. - p. 411.

Path-based Hardware Loop Prediction [Conference] // 4th International Conference on
Control, Virtual Instrumention and Digital Systems. - Mexico City, Mexico : [s.n.],
2002. - pp. 29-38.

Patterson David A and Sequin Carlo H RISC I: A Reduced Instruction Set VLSI
Computer [Conference] // ISCA ’81: Proceedings of the 8th annual symposium on
Computer Architecture. - Los Alamitos, CA, USA : IEEE Computer Society Press, 1981. -
pp. 443-457.

Raasch Steven E, Binkert Nathan L and Reinhardt Steven K A scalable instruction
queue design using dependence chains [Conference] // ISCA ’02: Proceedings of the 29th
annual international symposium on Computer architecture. - Washington, DC, USA :
IEEE Computer Society, 2002. - pp. 318-329.

Riseman E M and Foster C C The Inhibition of Potential Parallelism by Conditional
Jumps [Journal] // IEEE Trans.Computers. - 1972. - 12 : Vols. C-21. - pp. 1405-1411.

Rotenberg E, Jacobson Q and Smith J A Study of Control Independence in Superscalar
Processors [Conference] // HPCA ’99: Proceedings of the 5th International Symposium on
High Performance Computer Architecture. - Washington, DC, USA : IEEE Computer
Society, 1999. - p. 115.

Rotenberg Eric and Smith Jim Control independence in trace processors [Conference] //
MICRO 32: Proceedings of the 32nd annual ACM/IEEE international symposium on
Microarchitecture. - Washington, DC, USA : IEEE Computer Society, 1999. - pp. 4-15.

160

Sarangi Smruti R, Liu Josep Torrellas and Zhou Yuanyuan ReSlice: Selective Re-
Execution of Long-Retired Misspeculated Instructions Using Forward Slicing
[Conference] // MICRO 38: Proceedings of the 38th annual IEEE/ACM International
Symposium on Microarchitecture. - Washington, DC, USA : IEEE Computer Society,
2005. - pp. 257-270.

Sethumadhavan Simha [et al.] Scalable Hardware Memory Disambiguation for High
ILP Processors [Conference] // MICRO 36: Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture. - Washington, DC, USA : IEEE Computer
Society, 2003. - p. 399.

Sherwood Timothy [et al.] Automatically characterizing large scale program behavior
[Journal] // SIGOPS Oper.Syst.Rev.. - 2002. - 5 : Vol. 36. - pp. 45-57.

Smith Aaron [et al.] Dataflow Predication [Conference] // MICRO 39: Proceedings of
the 39th Annual IEEE/ACM International Symposium on Microarchitecture. -
Washington, DC, USA : IEEE Computer Society, 2006. - pp. 89-102.

Smith James E A study of branch prediction strategies [Conference] // ISCA ’81:
Proceedings of the 8th annual symposium on Computer Architecture. - Los Alamitos, CA,
USA : IEEE Computer Society Press, 1981. - pp. 135-148.

Sodani Avinash and Sohi Gurindar S Dynamic instruction reuse [Conference] // ISCA
’97: Proceedings of the 24th annual international symposium on Computer architecture. -
New York, NY, USA : ACM Press, 1997. - pp. 194-205.

Sohi Gurindar S, Breach Scott E and Vijaykumar T N Multiscalar processors
[Conference] // ISCA ’95: Proceedings of the 22nd annual international symposium on
Computer architecture. - New York, NY, USA : ACM Press, 1995. - pp. 414-425.

Srinivasan Srikanth T [et al.] Continual flow pipelines [Conference] // ASPLOS-XI:
Proceedings of the 11th international conference on Architectural support for
programming languages and operating systems. - New York, NY, USA : ACM Press,
2004. - pp. 107-119.

Steffan J and Mowry T The Potential for Using Thread-Level Data Speculation to
Facilitate Automatic Parallelization [Conference] // HPCA ’98: Proceedings of the 4th
International Symposium on High-Performance Computer Architecture. - Washington,
DC, USA : IEEE Computer Society, 1998. - p. 2.

Tendler Joel M, Dodson J Steve and and J S POWER4 system microarchitecture.
[Journal] // IBM Journal of Research and Development. - 2002. - 1 : Vol. 46. - pp. 5-26.

Tsai Jenn-Yuan and Yew Pen-Chung The Superthreaded Architecture: Thread
Pipelining with Run-Time Data Dependence Checking and Control Speculation
[Conference] // PACT ’96: Proceedings of the 1996 Conference on Parallel Architectures

161

and Compilation Techniques. - Washington, DC, USA : IEEE Computer Society, 1996. -
p. 35.

Tyson Gary Scott The effects of predicated execution on branch prediction [Journal]. -
1994. - pp. 196-206.

Tyson Gary, Lick Kelsey and Farrens Matthew Limited Dual Path Execution
[Journal]. - 1997.

Uht Augustus K [et al.] Levo - A Scalable Processor With High IPC [Journal] // J.
Instruction-Level Parallelism. - 2003. - Vol. 5.

Uht Augustus K, Sindagi Vijay and Hall Kelley Disjoint eager execution: an optimal
form of speculative execution [Conference] // MICRO 28: Proceedings of the 28th annual
international symposium on Microarchitecture. - Los Alamitos, CA, USA : IEEE
Computer Society Press, 1995. - pp. 313-325.

Vijaykumar T N and Sohi Gurindar S Task selection for a multiscalar processor
[Conference] // MICRO 31: Proceedings of the 31st annual ACM/IEEE international
symposium on Microarchitecture. - Los Alamitos, CA, USA : IEEE Computer Society
Press, 1998. - pp. 81-92.

Vintan Lucian N [et al.] An alternative to branch prediction: pre-computed branches
[Journal] // SIGARCH Comput.Archit.News. - 2003. - 3 : Vol. 31. - pp. 20-29.

Wallace Steven, Calder Brad and Tullsen Dean M Threaded multiple path execution
[Conference] // ISCA ’98: Proceedings of the 25th annual international symposium on
Computer architecture. - Washington, DC, USA : IEEE Computer Society, 1998. - pp.
238-249.

Wallace Steven, Tullsen Dean M and Calder Brad Instruction Recycling on a Multiple-
Path Processor [Conference] // HPCA ’99: Proceedings of the 5th International
Symposium on High Performance Computer Architecture. - Washington, DC, USA :
IEEE Computer Society, 1999. - p. 44.

