
 
 

ABSTRACT 

 
AL-ZAWAWI, AHMED SAMI. Transparent Control Independence (TCI). (Under the 
direction of Dr. Eric Rotenberg). 
 

Superscalar architectures have been proposed that exploit control independence, 

reducing the performance penalty of branch mispredictions by preserving the work of future 

misprediction-independent instructions. The essential goal of exploiting control 

independence is to completely decouple future misprediction-independent instructions from 

deferred misprediction-dependent instructions. Current implementations fall short of this goal 

because they explicitly maintain program order among misprediction-independent and 

misprediction-dependent instructions. Explicit approaches sacrifice design efficiency and 

ultimately performance. 

We observe it is sufficient to emulate program order. Potential misprediction-dependent 

instructions are singled out a priori and their unchanging source values are checkpointed. 

These instructions and values are set aside as a “recovery program”. Checkpointed source 

values break the data dependencies with co-mingled misprediction-independent instructions 

– now long since gone from the pipeline – achieving the essential decoupling objective. 

When the mispredicted branch resolves, recovery is achieved by fetching the self-sufficient, 

condensed recovery program. Recovery is effectively transparent to the pipeline, in that 

speculative state is not rolled back and recovery appears as a jump to code. A coarse-grain 

retirement substrate permits the relaxed order between the decoupled programs. Transparent 

control independence (TCI) yields a highly streamlined pipeline that quickly recycles 



 
 

resources based on conventional speculation, enabling a large window with small cycle-

critical resources, and prevents many mispredictions from disrupting this large window. 

TCI achieves speedups as high as 64% (16% average) and 88% (22% average) for 4-

issue and 8-issue pipelines, respectively, among 15 SPEC integer benchmarks. Factors that 

limit the performance of explicitly ordered approaches are quantified. 
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Chapter 1  

Introduction  

The performance of microprocessors has shown remarkable improvement in the past two 

decades. This improvement can be attributed to two factors: faster transistors, through 

technology advancements, and higher levels of instruction-level parallelism (ILP), through 

microarchitecture advancements. Technology trends remain strong for the foreseeable future. 

However, continuing to increase ILP is jeopardized by control-flow limits and ever-

increasing memory latency. This dissertation is concerned with control-flow limits. 

Modern superscalar processors extract ILP from a reservoir of instructions called the 

instruction window. The larger the instruction window, the more likely the processor can find 

independent instructions to execute in parallel. Because branches occur frequently (one 

branch every 5-10 instructions), processors must speculate past many branches to form a 

deep instruction window. Unfortunately, a single branch misprediction causes the processor 

to discard 100’s of speculative instructions from the instruction window. Because the penalty 

is so high, even a seemingly mild misprediction rate (e.g., 5%-10%) profoundly limits ILP. 

Figure 1 shows the utilization gap between real and perfect branch prediction across varying 

issue widths, using a detailed cycle-level simulator of superscalar processor with a state-of-

the-art perceptron branch predictor (Jimenez, et al., 2001) and a pipeline depth and memory 

hierarchy modeled after the Pentium-4. With perfect branch prediction, a large window is 

able to expose sufficient instruction-level parallelism in many benchmarks. However, with 
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real branch prediction, a misprediction rate of only 5%-10% can significantly limit 

performance. 

 

Figure 1. Harmonic mean IPC with perfect vs. real branch prediction, for 

SPEC95/SPEC2k integer benchmarks. 

Because of the crucial role that branch prediction plays in extracting ILP, it has received 

much attention in past decades. Current branch predictors are able to achieve high degrees of 

accuracy (higher than 90% on most benchmarks). However, completely eliminating branch 

mispredictions remains an open challenge. Therefore, techniques for tolerating and reducing 

the penalty of branch mispredictions are increasingly important. 

1.1 Branch misprediction tolerance techniques  

Figure 2 shows a branch and the instructions following it. The branch can take one of 

two control-flow paths. The point where control-flow merges is called the reconvergent point 

(RP). Instructions between the branch and its reconvergent point are control-dependent (CD) 

on the branch – whether or not they are fetched depends on the branch outcome. Instructions 

after the reconvergent point are control-independent (CI) of the branch and will be fetched 
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regardless of the branch outcome. However, some of the CI instructions are dependent on the 

branch outcome indirectly through data dependences (register or memory) and are labeled as 

control-independent data-dependent (CIDD) instructions. For example, in the figure, the 

consumer of R5 may get a different version of R5 depending on which path the branch takes. 

All other instructions in the CI region are control-independent data-independent (CIDI) 

instructions. CIDI instructions are truly independent of the branch and preserving them is the 

key to tolerating branch mispredictions. 

 
Figure 2. Example control-flow region. 

Branch misprediction tolerance implementations can be divided into four techniques: 

multipath, predication, control independence with skipping (CI-skip), and control 

independence with speculation (CI-speculate). 

• Multipath:  Multipath fetches and executes both paths after the branch, duplicating the CI 

instructions. The wrong CD and CI instructions are discarded when the branch executes. 

• Predication: Predication fetches and executes both CD paths up to the reconvergent 

point. Then, the CI instructions are fetched like usual. However, because the CI 
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instructions are not duplicated, the execution of CIDD instructions is delayed until the 

branch outcome is known. 

• CI-skip:  CI-skip does not predict the branch direction and instead jumps immediately to 

the reconvergent point and fetches the CI instructions. Only when the branch outcome is 

known does CI-skip fetch the correct CD instructions. Like predication, CI-skip must 

delay CIDD instructions until the branch outcome is known. 

• CI-speculate: CI-speculate fetches and executes the predicted CD path and the CI 

instructions, like conventional speculation. If the branch was mispredicted, then, selective 

recovery is attempted upon resolving the branch outcome. Selective recovery requires 

fetching and executing the correct CD instructions, and selectively re-executing the 

CIDD instructions. 

The way CD and CI instructions are handled affects (1) the degree of branch misprediction 

tolerance and (2) the penalty imposed on correctly predicted branches. 

 

Multipath, predication, and CI-skip incur a penalty on correctly predicted branches. 

Multipath wastes fetch and execution bandwidth on the alternate path of a correctly predicted 

branch, including duplicating CI instructions after the reconvergent point. Predication fetches 

both CD paths of a correctly predicted branch, thereby wasting fetch and execution 

bandwidth on the alternate CD path, and also needlessly delays the execution of the CIDD 

First thesis claim: 

For a processor with realistic resources, the CI-speculate  

technique outperforms other branch misprediction tolerance techniques, because it does 

not penalize correctly predicted branches. 
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instructions. CI-skip needlessly delays the execution of correctly predicted CD instructions 

and the CIDD instructions that depend on them. In practice, these penalties on correctly 

predicted branches partially or fully offset any gains from tolerating mispredicted branches. 

In some cases, performance is degraded with respect to conventional speculation. 

In this dissertation, the four branch misprediction tolerance techniques are qualitatively 

and quantitatively compared. The comparison reveals that CI-speculate is the best performer.  

1.2 Transparent Control Independence (TCI) 

Since CI-speculate is the best performer, we next focus on analyzing CI-speculate 

implementations to understand their limitations. Based on this analysis, we develop a new 

CI-speculate implementation. 

 

Prior CI-speculate implementations do not truly decouple CIDI instructions from CD and 

CIDD instructions. The root cause is that they explicitly maintain program order. The 

microarchitecture contribution of this dissertation is Transparent Control Independence 

(TCI). TCI decouples CIDI instructions from CD and CIDD instructions, by focusing on 

repairing program state instead of program order. TCI fully capitalizes on the work 

performed by CIDI instructions, by not wasting bandwidth on CIDI instructions during 

Second thesis claim: 

To achieve the full potential of CI-speculate, the microarchitecture must  

truly decouple misprediction-independent (CIDI) instructions  

from misprediction-dependent (CD & CIDD) instructions. 
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selective branch misprediction recovery and not delaying the freeing of CIDI instructions’ 

resources. 

Explicit order is maintained by prior CI-speculate implementations for two main 

reasons: 

1) Previous implementations evolved from reorder buffer (ROB) based designs.  The 

ROB buffers all instructions in program order to implement in-order retirement. 

Hence, the late-fetched correct CD instructions need to be reordered with respect to 

the early-fetched CI instructions.  

2) When CIDD instructions re-execute with changed values from the repaired CD 

region, they may also need to re-reference unchanged values from CIDI instructions. 

Ultimately, this means dependencies need to be maintained or recreated among co-

mingled CIDI and CIDD instructions. 

Implementations that explicitly maintain program order sacrifice design efficiency and 

performance. 

We propose that it is sufficient to mimic the effect of program order between 

misprediction-independent and misprediction-dependent instructions. First, we depart from 

the traditional ROB-based substrate, in favor of a more resource-efficient checkpoint-based 

substrate (Akkary, et al., 2003) (Cristal, et al., 2004) (Hwu, et al., 1987) (Moudgill, et al., 

1993). Leveraging coarse-grain retirement of a checkpoint-based substrate frees us from the 

fine-grain ordering constraint imposed by the ROB. Now, late-fetched correct CD 

instructions do not need to be reordered with respect to early-fetched CI instructions. Second, 

CIDD instructions are identified as they are fetched and their CIDI-supplied source values 
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are checkpointed, breaking any dependencies on CIDI instructions. The CIDD instructions 

along with their checkpointed source values are set aside in a FIFO re-execution buffer 

(RXB) in preparation for recovery. This is the first implementation that truly decouples the 

CIDI instructions from the CIDD instructions. 

When a branch is mispredicted, its incorrect CD instructions are fetched followed by CI 

instructions. All instructions – correct and incorrect – complete and speculatively release 

cycle-critical resources as they drain from the pipeline (physical registers, issue queue 

entries, etc.). When the mispredicted branch resolves, recovery is achieved by fetching a self-

sufficient condensed “recovery program”: the correct CD instructions (fetched from the 

instruction cache), the CIDD instructions (fetched from the RXB), and all input values 

needed to launch the correct CD and CIDD instructions (the branch’s checkpoint and the 

checkpointed CIDI-supplied source values of CIDD instructions). Recovery is effectively 

transparent to the pipeline, in that speculative state is not rolled back and recovery appears as 

a jump to code. TCI yields a highly streamlined pipeline that quickly recycles resources 

based on conventional speculation, enabling a large window with small cycle-critical 

resources, and prevents many mispredictions from disrupting this large window. 

Figure 3 shows a high-level view of TCI. Dynamic instructions are shown from left to 

right in the order in which they are fetched (fetch time). Correctly fetched and executed 

instructions are shown in white and incorrectly fetched or executed instructions are shown in 

gray. Correctly fetched instructions are labeled with their order in sequential program order 

(incorrect CD instructions are labeled with x’s instead). A branch is mispredicted at the 

beginning of the fetch timeline. Thus, incorrect CD instructions are fetched first followed by 



 

 
8 

CIDI and CIDD instructions. The first correctly fetched instruction is instruction 4. 

Sometime later, after fetching instruction 14, the misprediction is finally detected. At this 

point, the independent (thanks to input values from the branch’s checkpoint and RXB) 

recovery program is fetched. Notice the relaxed order: the recovery program’s instructions 1, 

2, 3, 6’, 10’, and 12’ come after the speculative program’s instruction 14 in the timeline. The 

pipeline does not differentiate between the speculative and recovery programs, as shown. The 

speculative state is not rolled back. Instead, the recovery program transparently repairs the 

speculative state. 

 
Figure 3. Transparent Control Independence (TCI). 
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1.3 Thesis contributions 

This thesis makes the following chief contributions: 

1) Comparison of branch tolerance techniques ( Chapter 3): 

� Comparison of bandwidth overheads of branch misprediction tolerance techniques. 

Various techniques (delay slots, multipath, static/dynamic predication, CI-skip, and 

CI-speculate) are analyzed based on branch coverage, branch misprediction penalty 

reduction, and overhead incurred by correctly predicted branches. Quantitative 

comparisons are also presented. 

2) Analysis of CI-speculate approaches ( Chapter 5): 

� Analysis of overheads of repairing CD instructions. The thesis analyzes issues 

associated with removing the wrong CD instructions from the middle of the window 

and inserting the correct CD instructions in the middle of the window. Processor 

resources impacted by CD repair are identified and possible solutions are discussed.  

� Comparison of resource and bandwidth overheads for repairing CIDD instructions. 

The thesis analyzes factors that reduce the performance of previous CI-speculate 

approaches and quantifies the impact of these factors. 

3) Transparent Control Independence ( Chapter 4 and  Chapter 6): 

� TCI concept and microarchitecture. A new approach is proposed that fully decouples 

misprediction-independent instructions from misprediction-dependent instructions, 

yielding a highly streamlined microarchitecture for exploiting control independence. 

The key insight is checkpointing CIDI-supplied source values of CIDD instructions. 

Another important aspect is using a relaxed, coarse-grain retirement substrate. 
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� Identifying CIDD instructions. Novel mechanisms are developed for assembling the 

CIDD instructions: the control-flow stack (CFS) for detecting arbitrary and nested 

reconvergent points, predicting the influenced register set (IRS), poisoning registers 

for identifying CIDD instructions, branch-sets for identifying CIDD loads, etc. 

� RXB reconstruction. Since CIDD slices of multiple branches are co-mingled within 

the RXB, servicing a branch misprediction may require repairing CIDD slices of 

other branches and selectively removing CIDD instructions of the resolved branch. A 

simple unified solution – identify CIDD instructions in the recovery program itself, as 

was done the first time for the speculative program – enables arbitrary adjustments to 

the RXB while preserving its simple FIFO policy. 

� Renaming partial programs: We propose a novel technique for renaming the recovery 

program despite its CIDI gaps. 

1.4 Thesis organization 

 Chapter 2 discusses the experimental method followed in this thesis.  Chapter 3 describes 

how branch misprediction tolerance techniques function, discusses relevant related work, and 

provides a qualitative and quantitative comparison among the techniques.  Chapter 4 

discusses control independence support mechanisms.  Chapter 5 investigates control 

independence implementations and challenges, including qualitative and quantitative 

comparisons with related work.  Chapter 6 presents the TCI microarchitecture in detail, 

including results and additional related work. Finally,  Chapter 7 provides a summary and 

future work. 
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Chapter 2  

Experimental method 

2.1 Simulators 

I have developed two custom timing simulators. Both use the PISA ISA from the 

Simplescalar toolkit (Burger, et al., 1996).   

2.1.1 Trace-driven timing simulator 

In  Chapter 3, I investigate previous branch misprediction tolerance techniques and 

evaluate their effectiveness. I use a fast trace-driven timing simulator to generate the results. 

The simulator focuses on modeling fetch bandwidth, execution bandwidth, and true 

dependencies among instructions in detail, since the various techniques tolerate branch 

mispredictions with different bandwidth requirements and dependency stalls. Structural 

resources are unbounded to assess the potential of all techniques. The window size is, 

however, limited to 8192 instructions. 

Instruction fetch is modeled using an ideal trace cache and a perceptron branch predictor 

(Jimenez, et al., 2001). Oracle memory disambiguation is used. The memory hierarchy 

consists of a 64KB L1 data cache, a 64KB L1 instruction cache, and a 2MB unified L2 

cache. 

For the baseline, predication, CI-skip, and CI-speculate, the trace-driven simulator 

models fetch and execution bandwidth consumed by wrong-path instructions. On the other 

hand, in modeling multipath, we opted for an upper performance bound using some oracle 

information. First, the simulator oracally identifies the correct thread and only allows forking 
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from this thread. This allows our multipath implementation to achieve higher performance by 

avoiding forking from the incorrect threads, saving fetch and execution bandwidth 

accordingly. Second, we only allow instructions from the correct thread to consume 

execution bandwidth. However, we do model sharing fetch bandwidth among all active 

threads. Despite only modeling sharing of fetch bandwidth, multipath performs weakly when 

compared with the other branch misprediction tolerance techniques being studied. 

2.1.2 Detailed execution-driven timing simulator 

The different CI-speculate architectures in  Chapter 5 and the Transparent Control 

Independence architecture (TCI) in  Chapter 6 are modeled using a detailed execution-driven 

cycle-level simulator. The simulator fetches and executes both correct and incorrect 

instructions as a real processor would, producing speculative values that affect the 

processor’s state, generating bad events such as load exceptions and so forth. A functional 

simulator is run independently and in parallel with the detailed execution-driven timing 

simulator to verify its retired outcomes. 

Table 1 shows the baseline microarchitecture parameters. For uniform comparisons, the 

baseline is TCI with the dynamic reconvergence predictor disabled, which ensures 

conventional (full) recovery for all branch mispredictions. Thus, the baseline is a checkpoint-

based superscalar processor with aggressive register reclamation (Akkary, et al., 2003). 
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Table 1. Baseline microarchitecture configuration. 

L1 I & D caches 
64KB, 4-way, 64B line,   

LRU, L1hit = 1 cycle 

L2 unified cache 

2MB, 8-way, 64B line, 

LRU, L2hit = 10 cycles, 

L2miss = 200 cycles 

Branch predictor perceptron (128KB) 

Memory dependence prediction store/branch sets 

Physical registers 256 

Checkpoints 16 

CFS 16 entries 

Issue width 4 or 8 

# pipeline stages 20 

Issue queue 32 or 64 

Load/store queue (LSQ) 512 

Re-execution buffer (RXB) 256 

Temp buffer (TB) 128 

 
Checkpoint-based processors use cycle-critical resources efficiently. They can form very 

large logical windows with small cycle-critical physical resources. However, checkpoint-

based processors introduce a penalty when servicing mispredicted branches that do not have 

checkpoints. In this case, misprediction recovery requires rolling back the processor state to 

the closest prior branch checkpoint, squashing even good instructions between the checkpoint 

and the mispredicted branch. On the other hand, conventional superscalar processors do not 

have this additional penalty. 

We compare our checkpoint-based baseline to a conventional ROB-based superscalar 

processor, to justify using the former as a baseline. Figure 4 shows IPCs of the checkpoint-

based superscalar processor (CPR) and a conventional superscalar processor (SS) with equal 



 

 
14 

resources. Figure 4(a)-(c) give the results of individual benchmarks, whereas Figure 4(d) 

shows several harmonic mean IPC results. In this experiment, CPR is allocated only 16 

branch checkpoints, whereas SS is allocated an unbounded number of checkpoints. From the 

figures, we observe that CPR outperforms SS on average. 

(a) (b) 

(c) (d) 

Figure 4. IPC for CPR baseline vs. SS baseline.  
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2.2 Benchmarks 

We use 11 SPEC2K integer benchmarks and 4 SPEC95 integer benchmarks compiled 

with the gcc-based Simplescalar compiler (Burger, et al., 1996) for the PISA ISA with -O3 

optimization. Reference inputs are used. 

For all benchmarks, a single simulation point of 100 million instructions was selected 

using the SimPoint 3.2 toolkit (Sherwood, et al., 2002). In addition, predictors and caches are 

warmed up for 10 million instructions prior to starting the simulation point.  

Table 2 shows benchmarks, inputs, and selected simulation points. 

Table 2. Benchmarks. 

Benchmarks SimPoint 3.2 (100m) 

bzip2-program-ref 406 
compress95-bigtest-ref 374 
crafty-ref 1466 
gap-ref 1619 
gcc-expr-ref 89 
go95-5stone21-ref 138 
gzip-graphic-ref 774 
ijpeg95-specmun-ref 84 
li95-ref 329 
mcf-ref 441 
parser-ref 2803 
perlbmk-diffmail-ref 117 
twolf-ref 1075 
vortex-two-ref 407 
vpr-route-ref 528 
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Chapter 3  

Branch misprediction tolerance techniques 

Branch prediction can only improve the performance of a superscalar processor, because 

the processor will otherwise stall waiting for the branches to execute. This significant 

performance gain is a result of keeping the window full of useful instructions. However, 

branch prediction has the disadvantage of wasting fetch and execution bandwidth when a 

misprediction occurs limiting the effective window size. Branch misprediction tolerance 

techniques like branch delay slots (Hennessy, et al., 1982) (Gross, et al., 1982) (Patterson, et 

al., 1981), multipath (Ahuja, et al., 1998) (Heil, et al., 1996) (Klauser, et al., 1998) (Uht, et 

al., 1995) (Wallace, et al., 1998) (Wallace, et al., 1999), predication (Allen, et al., 1983) 

(Kim, et al., 2006) (Kim, et al., 2005) (Klauser, et al., 1998) (Mahlke, et al., 1995) (Smith, et 

al., 2006), and control-independence (Al-Zawawi, et al., 2007) (Hilton, et al., 2007) (Cher, et 

al., 2001) (Chou, et al., 1999) (Gandhi, et al., 2004) (Rotenberg, et al., 1999) (Rotenberg, et 

al., 1999) (Sodani, et al., 1997) have the potential to reduce the penalty associated with 

branch mispredictions. 

3.1 Branch delay slots 

When pipelined processors were first introduced, processors had to deal with the fact of 

not having the outcomes of branches at fetch time. The outcome of the branches would only 

be known some cycles later when the branch instructions traveled down the processor 

pipeline and executed. This introduced a control hazard in the pipeline. The simplest remedy 

for the control hazard was to insert stalls in the pipeline from the time the branch is fetched 
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and until the branch outcome is known. This solution degraded the potential performance of 

pipelining since the processor is stalling and not doing useful work. 

Delayed branches were one of the first techniques to tolerate branch stalls in pipelined 

processors. This technique attempts to overlap branch stall cycles with useful instructions by 

delaying acting on the outcome of the branch. The ISA architects a fixed number of branch 

delay slots that are guaranteed to be fetched and executed after the branch regardless of its 

outcome. A compiler would then try to fill the branch delay slots with branch-independent 

instructions. If the branch delay slots are completely filled, then the branch stalls are 

completely hidden, otherwise, only partial tolerance is achieved. This technique evolved on 

single-issue in-order processors, where the branch stall penalty was only a few instructions 

(1-3 instructions). In fact, the compiler cannot always fill even a single delay slot (Gross, et 

al., 1982). 

As an alternative to branch delay slots, branch prediction was later successfully used to 

overcome the control hazard in pipelined processors. Moreover, branch prediction is capable 

of tolerating hundreds of stall cycles in modern out-of-order processors. Unfortunately, 

branch prediction is not always effective in tolerating a control hazard. Occasionally, branch 

predictions are wrong and the stall cycles are exposed, causing significant performance loss. 

In these situations, branch delay slots can play a limited role in minimizing the impact of a 

branch misprediction by reducing the misprediction penalty by a few instructions. In a 

modern processor, a branch misprediction can have a penalty that spans hundreds of 

instructions. Filling this many delay slots, statically, is impractical. Hence, branch delay slots 
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are not considered a viable solution to tolerate branch mispredictions in the presence of more 

effective techniques. 

3.2 Multipath 

Multipath reduces the penalty of a branch misprediction by speculatively executing both 

paths of a branch. When the branch outcome is known, the incorrect path is discarded. This 

allows multipath to avoid part of the misprediction penalty, since some instructions on the 

correct path have been executed. 

Figure 5 presents an example of covering a branch misprediction with multipath. After 

fetching the branch in Figure 5(a), the processor follows both possible paths. Hence, the 

processor avoids the need to predict a single path to follow. Figure 5(b) shows how both the 

wrong CD instructions from path 1 and the correct CD from path 2 are fetched and executed 

simultaneously. Notice that the CI instructions are duplicated and that the CIDD instruction 

consuming R5 will execute with different source operands independently on both paths. 

Unfortunately, CIDI instructions will needlessly execute redundantly on both paths, since we 

know that their results will be the same. In Figure 5(c), the branch outcome is known and the 

wrong path is discarded. Resources are reclaimed from path 1 and reallocated toward path 2. 

Multipath branch misprediction tolerance comes at the price of dividing the processor’s 

resources between correct and incorrect execution paths. This facet can also degrade the 

performance of correctly predicted branches covered by multipath needlessly, because not all 

resources are allocated to the correctly predicted path as would be the case in a normal 

processor. This problem is worsened when covering multiple branches with multipath, as the 

number of simultaneous paths pursued increases exponentially with the number of covered 
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branches. Prior implementations of multipath have lessened the impact of this problem by 

selectively applying multipath based on branch confidence (Heil, et al., 1996) (Klauser, et al., 

1998) (Wallace, et al., 1998) and other heuristics (Uht, et al., 1995). 

 
(a) 

(b) (c) 

Figure 5. Multipath example. 
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3.3 Predication 

Predication takes a different approach to branch misprediction tolerance. In predication, 

all control-dependent instructions are fetched regardless of the branch outcome and the 

execution of the control-independent data-dependent (CIDD) instructions is delayed until the 

branch is resolved. In doing so, predication avoids the need to predict covered branches, 

hence, the branch mispredictions and their negative effects are eliminated altogether. 

Predication can be performed statically by a compiler (Allen, et al., 1983) (Mahlke, et al., 

1995), or dynamically in the processor (Kim, et al., 2006) (Kim, et al., 2005) (Klauser, et al., 

1998). 

Static predication leverages ISA support and typically can convert 30% of branches 

(Tyson, 1994). Static predication’s low coverage can be attributed to: 

1) Some control-flow constructs are hard to represent in static form after being 

predicated (for example: loops). 

2) Predication may require in-lining some functions. This increases the size of the code 

and could be a limiter on the amount of predication that can be practically done. 

3) Some branches do not have their targets available at compile time due to indirect calls 

or calls to functions in dynamically linked libraries. 

4) Some branches may have many possible paths, such as switch statements, making 

predication unreasonable. 

On the other hand, dynamic predication can partially overcome these challenges and 

achieves higher branch coverage, by leveraging dynamic information available to the 
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processor and the ability of the processor to unwind complex control-flow dynamically into 

simple dynamic hammocks (Kim, et al., 2006) (Klauser, et al., 1998). 

Predication avoids the need for predicting a branch but at a cost. In predication, both CD 

paths of the branch are fetched and the execution of CIDD instructions is delayed until the 

predicate outcome of the branch is known. This penalty affects all predicted branches 

regardless of whether or not the branches would have been correctly predicted or 

mispredictions under normal branch prediction. This indiscriminate penalty limits the benefit 

of predication and could even degrade performance. Dynamic predication, with the help of 

branch confidence, reduces this negative effect by trying to avoid predicating correctly 

predicted branches (Kim, et al., 2006) (Kim, et al., 2005) (Klauser, et al., 1998). 

Figure 6 shows an example of covering a branch misprediction with dynamic 

predication. When the branch is first fetched in Figure 6(a), the processor identifies the 

branch’s possible control paths either using branch prediction or leveraging information 

provided by the compiler. In Figure 6(b), the processor fetches both CD paths, one after 

another. Both the correct and incorrect CD instructions are executed. When the reconvergent 

point is reached in Figure 6(c), the processor continues to fetch the CI instructions. Since the 

branch outcome is not known, the processor needs to delay the execution of the CIDD 

instructions (guard the CIDD instructions) to avoid consuming the wrong source operands 

(Figure 6(d)). Once the branch outcome is known in Figure 6(e), the processor simply allows 

the CIDD to execute with the correct source operands. Predication typically uses proxy move 

instructions to forward the correct register productions from the CD region to the CI region. 
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In addition, we can optimize performance by stopping execution of the wrong CD 

instructions once the branch outcome is known, since their results are not needed. 

 
(a) 

(b) (c) 

(d) (e) 

Figure 6. Dynamic predication example.  
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3.4 Control independence 

Control independence is a dynamic technique that tolerates the penalty of a branch 

misprediction by selectively repairing the processor’s state, meanwhile preserving the work 

done by CIDI instructions (Al-Zawawi, et al., 2007) (Hilton, et al., 2007) (Cher, et al., 2001) 

(Chou, et al., 1999) (Gandhi, et al., 2004) (Rotenberg, et al., 1999) (Rotenberg, et al., 1999) 

(Sodani, et al., 1997). Two styles of control independence exist based on the way they handle 

the CD instructions. The first style of control independence skips over the CD instructions of 

a branch (the branch is not predicted) and then executes the CIDI instructions while guarding 

the execution of the CIDD instructions (CI-skip) (Cher, et al., 2001). When the branch 

outcome is known, the correct CD instructions are fetched and executed and then the guarded 

CIDD instructions are allowed to execute. 

In Figure 7, we go through an example of covering a branch misprediction with CI-skip. 

After the branch is fetched in Figure 7(a), the processor needs to identify its reconvergent 

point. The processor then diverts fetch to the reconvergent point in Figure 7(b), avoiding 

fetching any CD instructions. Next, in Figure 7(c), CIDD instructions are identified and 

guarded since their source operands may change. When the branch outcome is known in 

Figure 7(d), the processor goes back and fetches the correct CD instructions. Finally, in 

Figure 7(e), the guarded CIDD instructions are allowed to execute. 
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(a) 

(b) (c) 

(d) (e) 

Figure 7. Control-independence skip (CI-skip) example. 
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The second style of control independence speculates down the predicted path of the CD 

region and executes all CI instructions (CI-speculate) (Chou, et al., 1999) (Gandhi, et al., 

2004) (Rotenberg, et al., 1999) (Rotenberg, et al., 1999) (Sodani, et al., 1997). When a 

branch misprediction is detected, the wrong CD instructions are selectively removed and 

replaced by the correct CD instructions, followed by selectively re-executing the CIDD 

instructions. CI-speculate only has to recover when a misprediction is detected, whereas CI-

skip penalizes a correctly predicted branch (unless the correctly predicted branch has no CD 

instructions on the correct path and no CIDD instructions are encountered until the branch 

resolves). CI-speculate benefits from the fact that prediction is correct most of the time and 

avoids skipping correct CD instructions needlessly. So, CI-speculate achieves the 

performance of speculation by not degrading performance when a branch is correctly 

predicted. Moreover, CI-speculate is able to cover branch mispredictions and reduce their 

performance penalty. 

Figure 8 shows an example of a branch misprediction covered by CI-speculate. After the 

branch is fetched in Figure 8(a), the processor predicts the outcome of the branch using the 

branch predictor. In Figure 8(b), we fetch the CD instructions on the predicted path. Once the 

reconvergent point is detected in Figure 8(c), the CD region has ended and we continue to 

fetch the CI region. Notice that all CI instructions are fetched and executed with the 

assumption that the prediction was correct. In Figure 8(d), the branch outcome is known and 

we must start to recover from the branch misprediction. We first squash the wrong CD 

instructions and go back to fetch the correct CD instructions from the actual path. Finally, in 

Figure 8(d), we re-execute the CIDD instructions to complete branch misprediction recovery. 
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CIDD re-execution is needed since these instructions have executed initially with wrong 

source operands produced by the wrong CD instructions. 

 
(a) 

 
(b) 

 
(c) 

(d) (e) 

Figure 8. Control-independence speculate (CI-speculate) example. 
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3.5 Qualitative comparison 

The goal of branch misprediction tolerance techniques is to achieve the performance of 

perfect branch prediction (all branches are correctly predicted). When using perfect branch 

prediction, the processor is always occupied by correct and useful instructions, and the 

processor does not encounter the delays and stall cycles associated with branch 

mispredictions. 

Hence, the success of a branch misprediction tolerance technique depends on three 

factors: 

1) Branch misprediction coverage: The percentage of branch mispredictions that can be 

covered by a given branch misprediction tolerance technique dictates the branch 

misprediction coverage. 

2) Misprediction penalty: When a branch misprediction is covered with a given 

technique, the penalty still exposed to the processor in the form of stall cycles or 

wasted work (fetch and execution bandwidth) represents the branch misprediction 

penalty of the technique. 

3) Correct prediction penalty: Since branch mispredictions are not known at the time of 

fetching the branch, we need to cover branches speculatively in anticipation of a 

misprediction. If a correctly predicted branch is covered, the tolerating technique may 

incur a penalty associated with this coverage. This penalty may degrade the 

performance of the overall system compared with conventional misprediction 

recovery which does not incur any penalty for a correctly predicted branch. 
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The ideal branch misprediction tolerance technique would cover all branch 

mispredictions, have no misprediction penalty, and have no penalty for covering a correctly 

predicted branch. Achieving this ideal solution is as challenging as achieving perfect branch 

prediction. We talked briefly about the different solutions toward the branch misprediction 

problem. Branch delay slots, multipath, static/dynamic predication, and skip/speculate 

control independence variants try to improve performance by reducing the penalty of branch 

mispredictions, however, each technique brings with it different compromises with respect to 

branch misprediction coverage, exposed misprediction penalty, and overhead of covering a 

correct prediction. 

Multipath has the potential to cover all branch mispredictions but with a bandwidth 

requirement that grows exponentially with the number of unresolved branches in the 

window. This requirement can be potentially reduced using branch confidence. However, for 

a limited issue machine, multipath is not able to achieve reasonable performance despite 

good branch coverage. Whenever multipath covers a branch (whether correctly predicted or 

not), it takes away from the available processor bandwidth.  So, by definition, multipath 

cannot achieve perfect utilization. 

On the other hand, predication and control independence reduce the bandwidth 

requirements needed by multipath, by avoiding duplicating instructions after the 

reconvergent point is reached. This is very important, as we only waste bandwidth on the CD 

instructions. This brings us that much closer to our goal of perfect bandwidth utilization. 

Static predication has low branch coverage (as discussed in Section  3.3). On the other 

hand, dynamic predication and control independence implementations achieve much higher 



 

 
29 

branch coverage than static predication by leveraging the ability of the dynamic instruction 

window to inline all the code and resolve complex control-flow into simple sequential traces 

of instructions without any loops. 

Predication, CI-skip, and CI-speculate differ in the way they deal with the misprediction-

dependent instructions (CD instructions and CIDD instructions) of a covered branch. This 

difference dictates the amount of misprediction penalty that can be tolerated and the amount 

of penalty added to correctly predicted branches. In predication, both CD paths are fetched 

(and possibly executed, depending on the implementation) and the execution of the CIDD 

instructions is delayed (guarded) until the branch outcome is known. In CI-skip, both 

fetching the CD instructions and executing the CIDD instructions are delayed until the 

branch outcome is known. In CI-speculate, the predicted CD path is fetched and the CIDD 

instructions are allowed to execute speculatively. However, when a branch misprediction is 

detected, CI-speculate replaces the wrong CD instructions with the correct CD instructions 

and re-executes the CIDD instructions to repair their state. 

Table 3 compares the different branch recovery models with respect to branch coverage, 

exposed misprediction penalty, and penalty incurred by covering correctly predicted 

branches. In the context of an aggressive superscalar processor, it is important to choose a 

branch misprediction tolerating technique that does not degrade the performance of the base 

system. We noticed that branch delay slots, predication and multipath have the potential to 

degrade performance when the branch is correctly predicted. This penalty can be reduced at 

the expense of reduced branch coverage, using branch confidence. In addition, branch delay 

slots do not have enough branch misprediction tolerance to cover the full penalty. On the 
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other hand, Control independence represents the middle ground, exhibiting medium branch 

coverage (due to branches with no reconvergent points or branches with very large CD 

regions) and low overheads. Within control independence styles, we choose to trust the 

branch predictor and go with CI-speculate versus CI-skip that conceptually injects a 

misprediction at every skipped branch. Notice, CI-speculate is the only technique that does 

not degrade the performance of a correctly predicted branch, making it a suitable technique 

to complement conventional branch recovery. 

Table 3. Comparison of branch misprediction tolerance techniques. 

Recovery 
scheme 

Branch 
Coverage Misprediction Penalty Correct Prediction 

Penalty 

Squash-based 
recovery(Base) 

High Wrong CD + CIDD + CIDI None 

Branch delay 
slots 

High 
Base misprediction penalty 

– # filled delay slots 
# empty delay slots 

Multipath High 
Base misprediction penalty  

X ( 1 – 1 / #paths ) 
Base misprediction penalty  

X ( 1 – 1 / #paths ) 

Predication - 
static 

Low Wrong CD + CIDD Wrong CD + CIDD 

Predication - 
dynamic 

Medium Wrong CD + CIDD Wrong CD + CIDD 

CI-skip Medium CIDD Correct CD + CIDD 

CI-speculate Medium Wrong CD + CIDD None 
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3.6 Quantitative comparison 

3.6.1 Effect of branch confidence 

Figure 9 shows the harmonic mean IPC results for a 4-issue processor. The four modeled 

branch misprediction tolerance techniques (CI-skip, CI-speculate, dynamic predication, and 

multipath) are run with varying confidence thresholds (TH: 4, TH: 8, TH: 16, and TH: 32) 

and varying maximum region sizes (RS= ∞, RS= 256, and RS= 32). The figure also shows 

the results for a processor with squash-based misprediction recovery (Base), a processor with 

perfect branch prediction (Perfect), and the branch misprediction tolerance techniques with 

oracle confidence (Oracle Conf). 

From Figure 9 (a)-(b), we observe that Perfect achieves significant performance gains 

over Base and comes very close to the peak utilization of the processor. Perfect results mark 

the performance upper bound for any branch prediction or branch misprediction tolerance 

technique. 

The upper bound for a specific branch misprediction tolerance technique can be 

observed by leveraging oracle branch confidence (Oracle Conf). With Oracle Conf, all 

branch mispredictions are covered, leading to the highest possible misprediction tolerance, 

and all correctly predicted branches are not covered, preventing possible performance 

degradations. 

In Figure 9 (a)-(b), we notice that CI-skip with Oracle Conf has very high potential, 

coming close to Perfect. This confirms that CI-skip has very high branch misprediction 

tolerance. It is able to hide most of the branch misprediction penalty, exposing only the 

guarding of the CIDD instructions (see Table 3). On the other hand, CI-speculate, dynamic 
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predication, and multipath only have medium performance potential with Oracle Conf. This 

can be attributed to the fact that all three models expose a bigger portion of the branch 

misprediction penalty when compared to CI-skip. In all three models, the wrong CD 

instructions component of the misprediction penalty is exposed (see Table 3). It is also 

interesting to see that these three models achieve very close results with oracle branch 

confidence, averaged over the benchmarks 

Now that we have seen the upper bound of each technique using Oracle Conf, we 

investigate the real-world performance using real branch confidence. A 4096-entry branch 

confidence predictor with resetting counters (Jacobsen, et al., 1996) is used to generate the 

results. By varying the confidence threshold from 4 to 32, the number of branch 

mispredictions covered by the branch misprediction tolerance technique is increased at the 

cost of covering additional correctly predicted branches.  In addition, the maximum branch 

region size covered is varied. The region size of a branch is an indicator of the cost of 

covering the branch with a given technique. The larger the branch region, the higher the cost 

to cover the branch and the less likely the benefit is. 

In Figure 9 (a)-(b), CI-skip shows slight improvement over Base with real branch 

confidence. The performance peaks with a branch confidence threshold of 32 and a 

maximum region size of 256. CI-skip performance is very far from the potential upper bound 

shown by Oracle Conf, because CI-skip introduces a branch misprediction when covering a 

correctly predicted branch. The added mispredictions add a penalty that offsets the savings of 

covering true mispredictions and could possibly degrade performance with respect to Base. 
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On the other hand, CI-speculate shows substantial performance gains compared to CI-

skip. In fact, CI-speculate performance approaches the performance of Oracle Conf with a 

threshold of 32 and without setting a maximum region size. The reason for this phenomenon 

is that correctly predicted branches covered by CI-speculate do not perceive a penalty, 

allowing CI-speculate to cover many branches, mispredicted or not, with low overheads. 

As for dynamic predication, it degrades performance with respect to Base. Dynamic 

predication performs best with a threshold of 4. Dynamic predication favors only covering 

relatively small region sizes below 256. This degradation can be attributed to the high cost of 

covering branches in a relatively narrow machine. Both multipath and dynamic predication 

are very sensitive to branch confidence. To achieve reasonable results in a narrow machine, 

we need a more accurate confidence predictor. Branch confidence is less of an issue in very 

wide machines, as the overhead of covering correctly predicted branches is reduced. 
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(a) 

 
(b) 

Figure 9. Branch misprediction tolerance techniques with varying confidence 

thresholds (TH) and maximum branch region size (RS). 
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Figure 10, Figure 11, Figure 12, Figure 13, and Figure 14 present the IPC results for CI-

skip, CI-speculate, dynamic predication, and multipath for the individual benchmarks. 

Several trends can be observed: 

1) CI-speculate never degrades performance with respect to Base. 

2) CI-speculate Oracle Conf results are lower than the Oracle Conf results of the other 

techniques in some benchmarks (for example: bzip, compress, and li). Even so, CI-

speculate outperforms the other models in these benchmarks. 

3) CI-skip outperforms CI-speculate in some benchmarks (for example: gap and twolf). 

4) CI-skip has the potential to degrade performance with respect to Base (for example: 

bzip, compress, crafty, gcc, li, and perl). 

5) CI-skip favors different confidence threshold levels with different benchmarks. In gap, 

for example, it favors a threshold of 32. However, in perl, it favors a threshold of 4. 

6) Dynamic predication degrades performance most of the time in the narrow processor, 

but shows some improvement in some benchmarks (for example: compress, gzip, 

ijpeg, twolf, and vpr). 

7) Multipath degrades performance on most benchmarks and only sees slight speedups in 

vpr. The reason is that multipath is not suited for narrow processors and prefers very 

wide processors. 
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(a) 

 
(b) 

 
(c) 

Figure 10. Branch misprediction tolerance techniques with varying confidence 

thresholds (TH) and maximum branch region size (RS) (individual benchmarks). 
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(a) 

 
(b) 

 
(c) 

Figure 11. Branch misprediction tolerance techniques with varying confidence 

thresholds (TH) and maximum branch region size (RS) (individual benchmarks). 
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(a) 

 
(b) 

 
(c) 

Figure 12. Branch misprediction tolerance techniques with varying confidence 

thresholds (TH) and maximum branch region size (RS) (individual benchmarks). 
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(a) 

 
(b) 

Figure 13. Branch misprediction tolerance techniques with varying confidence 

thresholds (TH) and maximum branch region size (RS) (individual benchmarks). 
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(a) 

 
(b) 

 
(c) 

Figure 14. Branch misprediction tolerance techniques with varying confidence 

thresholds (TH) and maximum branch region size (RS) (individual benchmarks). 
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3.6.2 Performance potential in wider processors 

Figure 15 shows the harmonic mean IPC results of six models with varying issue widths 

(issue width: 4 to 32). The four modeled branch misprediction tolerance techniques are 

shown (CI-skip, CI-speculate, dynamic predication, and multipath), with oracle branch 

confidence on the left and real branch confidence on the right. Each branch misprediction 

tolerance technique is run using the branch confidence threshold (TH) and the maximum 

branch region size (RS) that maximizes its performance (leveraging the results presented in 

Section  3.6.1). The figure also shows results for a processor with squash-based misprediction 

recovery (Base) and a processor with perfect branch prediction (Perfect). 

In Figure 15 (a)-(b), we observe that Perfect achieves significant improvement over 

Base. Perfect achieves close to full utilization of the processor bandwidth with low issue 

widths (less than 8 issue width). However, as the issue width is increased, Perfect fails to 

achieve the full utilization of the machine due to the limited ILP available to the processor’s 

window (the window size is 8192 entries as described in Section  2.1.1). 

In Figure 15 (a)-(b), we notice that CI-skip continues to outperform all branch 

misprediction tolerance techniques when applying oracle confidence. CI-speculate, dynamic 

predication, and multipath have similar results across the different issue widths with oracle 

confidence. In addition, multipath continues to show improvement potential at issue widths 

higher than 24. 

When applying real branch confidence to the branch misprediction tolerance techniques, 

we observe that CI-speculate outperforms CI-skip, dynamic predication, and multipath. 

Although the performance of multipath has fallen with real confidence, it still shows 
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performance potential with increased issue width, allowing it to outperform CI-skip and 

dynamic predication. 

 
(a) 

 
(b) 

Figure 15. Branch misprediction tolerance techniques with varying issue width. 
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Figure 16, Figure 17, Figure 18, Figure 19, and Figure 20 present the IPC results for CI-

skip, CI-speculate, dynamic predication, and multipath for the individual benchmarks. 

Several trends can be observed: 

1) CI-speculate outperforms the other techniques when using real confidence, most of the 

time. 

2) Multipath’s high branch coverage gives it an advantage with very wide processors. For 

example, in bzip, li, and perl, multipath approaches or overcomes CI-speculate. 

3) Interestingly, CI-skip, CI-speculate, and dynamic predication outperform Perfect in 

vortex with oracle confidence. In addition, CI-speculate outperforms Perfect with real 

confidence and an issue width of 32. Vortex has a low branch misprediction rate and 

the reason for this advantage is that CI-skip, CI-speculate, and dynamic predication 

allow the processor to open up the window quicker than sequential fetch. By taking the 

shorter path of a branch region, the advantage of exposing the future instructions 

outweighs the penalty of the branch misprediction, in this benchmark. 
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(a) 

 
(b) 

 
(c) 

Figure 16. Branch misprediction tolerance techniques with varying issue width 

(individual benchmarks). 
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(a) 

 
(b) 

 
(c) 

Figure 17. Branch misprediction tolerance techniques with varying issue width 

(individual benchmarks). 
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(a) 

 
(b) 

 
(c) 

Figure 18. Branch misprediction tolerance techniques with varying issue width 

(individual benchmarks).  
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(a) 

 
(b) 

Figure 19. Branch misprediction tolerance techniques with varying issue width 

(individual benchmarks). 
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(a) 

 
(b) 

 
(c) 

Figure 20. Branch misprediction tolerance techniques with varying issue width 

(individual benchmarks). 

0

5

10

15

20

25

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

twolf

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

0

5

10

15

20

25

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

vortex

Perfect Multipath CI-skip CI-speculate Dynamic predication Base

0

1

2

3

4

5

6

7

8

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

Oracle confidence Real confidence

IP
C

vpr

Perfect Multipath CI-skip CI-speculate Dynamic predication Base



 

 
49 

Chapter 4  

Control independence support mechanisms 

Covering a branch with control independence has the advantage of reducing the branch 

misprediction penalty. However, to successfully cover a branch, we need to identify its 

control independent (CI) instructions accurately. This requires us to accurately know the 

branch’s reconvergent point. In addition, we need to be able to detect and track reconvergent 

points in the dynamic instruction stream efficiently. Finally, we need an accurate account of 

all CIDD instructions influenced by the branch outcome. 

To maximize the performance of our system, we need to leverage control independence 

on as many branch mispredictions as possible. However, achieving high branch 

misprediction coverage is difficult and requires dealing with complex and unstructured 

control-flow. For example, some branch mispredictions involve complex control-flow, such 

as nested branches and recursive functions, which may lead to incorrect reconvergent points 

or the inability to detect the reconvergent points. Therefore, the recruited mechanisms must 

be robust: resilient to all control-flow constructs, able to recover from incorrect 

reconvergence information, and, meanwhile, flexible enough to adapt to the available 

resources and optimize system performance. 

4.1 Reconvergent point 

A reconvergent point is an instruction that post-dominates a branch. This requirement is 

necessary to consistently distinguish between instructions before and after the reconvergent 

point. If a post-dominating point is not selected, some control-flow paths in the branch region 
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may miss the reconvergent point. Hence, we cannot leverage control independence on this 

branch misprediction because we cannot distinguish the control-dependent from the control-

independent instructions. A branch’s reconvergent point can be generated using a compiler, 

simple control-flow heuristics, or a hardware predictor. 

4.1.1 Compiler 

The compiler needs to provide the reconvergent point of each branch and convey this 

information to the processor.  For example, gcc’s existing post-dominator analysis can be 

used to locate reconvergent points. The generated reconvergent points are conservative since 

the compiler considers all possible control-flow paths between the branch and its 

reconvergent point, including rarely traversed paths. 

Once all the reconvergent points have been identified, a mechanism is required to 

convey this information to the processor. One solution is to encode this information into the 

original binary. The ISA would provide optional support for the compiler to specify the 

immediate reconvergent point of a branch. For 64-bit instruction encodings or variable-length 

instruction encodings, it may be feasible to add a pc-relative offset to encode the 

reconvergent PC of a branch. Otherwise, a new instruction is needed for conveying 

reconvergent PCs and would immediately precede corresponding branch instructions. Both 

forms could be supported, an offset for most reconvergent PCs and an instruction for 

reconvergent PCs that exceed the offset. Reconvergent PCs do not effect the program’s 

function (branches with no reconvergent points would leverage conventional (full) branch 

recovery), so branches with reconvergent points that cannot be encoded or branches with 

unknown reconvergent points can be safely excluded. 
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4.1.2 Heuristics 

A simple approach for generating reconvergent point information is to leverage 

imprecise heuristics. Heuristics exploit common control-flow constructs that tend to have 

obvious post-dominators. Using heuristics, we can avoid using the compiler and modifying 

the binary to pass the reconvergent point information to the processor. In essence, heuristics 

sacrifice branch misprediction coverage for simplicity and the ability to cover programs 

without the need for recompiling them. 

� Return heuristic: Functions tend to isolate all control-flow within them except in 

extraordinary circumstances such as long-jump instructions and exit conditions. 

Hence, the return heuristic builds on the fact that a return of a function tends to be a 

post-dominator for all instructions within the function and can act as a valid 

reconvergent point (Rotenberg, et al., 1999). 

� Loop heuristic: In structured code, the loop exit tends to be a post-dominating point 

for all instructions within the body of the loop. The loop exit is often identified by a 

backward branch. The loop heuristic is not precise, as some backward branches may 

not correspond to loop exits (Rotenberg, et al., 1999). 

� Hammock heuristic: By observing the if-then construct in structured code, we notice 

that the branch’s target points to a post-dominating point for all instructions in the if-

then construct body. Hence, the branch’s target can be used as the branch’s 

reconvergent point (Gandhi, et al., 2004) (Rotenberg, et al., 1999). 
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4.1.3 Dynamic reconvergence predictor 

The dynamic reconvergence predictor proposed by Collins et al. (Collins, et al., 2004) 

can also be leveraged for providing the reconvergence information needed for control 

independence. The hardware reconvergence predictor combines the advantages of both the 

compiler approach and the heuristic approach. It is able to achieve high branch misprediction 

coverage while avoiding the need to recompile the targeted programs. The reconvergence 

predictor categorizes branches into four categories based on the location of the reconvergent 

point with respect to the branch and the control-flow leading to it (Collins, et al., 2004). 

� Reconverge below max: This category includes branches with their reconvergent 

points below them. This is the most common type of branch category. Instructions 

below the reconvergent point and at the same call depth can never be fetched between 

the branch and its reconvergent point. An example of a branch in this category is a 

simple forward hammock with no embedded branches or the backward branch in a 

“for loop”. 

� Reconverge above max: Branches with their reconvergent points above them are 

considered within this category. Instructions between the reconvergent point and the 

branch in the same call depth can only be fetched after the reconvergent point. 

� Rebound reconverge: Branches that have their reconvergent points below them but 

are not part of the reconverge below max category are part of this category. These 

branches were not part of the reconverge below max category because some 

instructions from below the reconvergent point are fetched between the branch and its 

reconvergent point. This can occur because of some control-flow after the branch that 
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pass the reconvergent point and then branch backward to the reconvergent point. This 

situation is commonly associated with switch-case construct. 

� Return reconverge: Branches in this category reach one or more return points (with 

the same call depth) before reaching a common reconvergent point. 

The reconvergence predictor continuously monitors the retired instruction stream and 

tries to detect changes to the current reconvergent points. The predictor can monitor a limited 

number of branches at any given time. These active branches are located in the Active 

Reconvergence Table (ART). Each monitored branch can potentially fall within any of the 

four branch categories; hence, the predictor maintains four reconvergent points for each 

branch. When the reconvergent point for a given category is seen, that category is 

deactivated. If a retired PC violates the assumptions of an active category, we update its 

reconvergent PC with the newly retired instruction’s PC. For example, in the reconverge 

below max category, if we see a PC below the reconvergent point and with the same call 

depth before reconverging, we detect that the old reconvergent point is incorrect and we 

update our entry with the new reconvergent point. When all categories are inactive, the 

branch leaves the ART and updates the Reconvergence Prediction Table (RPT). The RPT is 

indexed by the branch’s PC. If a branch hits in the RPT, the most likely reconvergent point is 

selected from the four reconvergence categories. 

In this thesis, the predictor is augmented to provide additional information. Confidence 

counters separate accurate from inaccurate predictions. The confidence counter of a given 

branch is incremented whenever an instance of the branch and its reconvergent point retires 

without causing a change to the predictor’s state. If the retired reconvergent point invalidates 
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the previously stored reconvergent points then we update the entry and reset the confidence 

counter. In addition, for each branch, the predictor keeps track of the maximum path length 

through the branch’s control-dependent (CD) region, among paths that were traversed. This 

information is useful for guiding when to apply control independence. We select a maximum 

CD path length above which it is not worthwhile to exploit control independence due to the 

sheer number of incorrect control-dependent instructions. 

4.1.4 Performance impact of reconvergent point selection 

The distance of the reconvergent point from its branch affects the performance potential 

of control independence. The closer the reconvergent point is to the branch, the less work 

that is squashed and wasted (incorrect CD instructions) when a branch misprediction occurs 

and the more the potential for saving CIDI instructions. 

True reconvergent points, which are valid on all control-flow paths, may not yield the 

highest performance. By identifying that some control-flow paths are infrequently traversed, 

speculative reconvergent points emerge with higher performance potential. For example, 

Figure 21 shows a branch with two possible control-flow paths. However, the right path 

encompasses a branch that transfers control outside the main branch’s two paths. Hence, the 

true reconvergent point is located at the target of the infrequent control-flow path. This 

control-flow construct is common in branches that contain early loop exits and in error 

checking code where the branch ends the program if an error condition occurs. 

If we ignore the infrequent control-flow path, the speculative reconvergent point is 

located at the intersection of the main branch’s two control-flow paths, which is much closer 

to the branch. However, in the case we traverse the infrequent control-flow path, we can no 
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longer take advantage of control-independence to reduce the penalty of the misprediction on 

the main branch and must revert to squash-based branch misprediction recovery. The tradeoff 

between selecting speculative versus true reconvergent points must be balanced to achieve 

the highest performance gains. 

Moreover, considering CI-skip as a possible sequencing model changes tradeoffs with 

respect to reconvergent point selection. With CI-skip, we no longer have to worry about 

wasted work done on CD instructions. The CD path is delayed until the branch resolves. 

However, the effect of reconvergent point selection on performance depends mainly on the 

quality of the CI region. A CI region with a high fraction of CIDI instructions is desirable. 

Since the number of CIDI instructions depends on the nature of the data dependencies and 

how much of them are influenced by the productions in the branch’s CD region, it is difficult 

to evaluate if selecting a given reconvergent point over another is beneficial. Quantifying this 

tradeoff is involved and optimizing performance requires finding points where the number of 

CIDI instructions is maximized. 

 

Figure 21. Example of true vs. speculative reconvergent points. 

Additional CI 
instructions

Speculative 
reconvergent point

True
reconvergent point

Infrequent 
control-flow path
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4.2 Control-Flow Stack (CFS) 

The previous section discussed ways to associate a reconvergent point with each branch. 

Using this information, we need a mechanism to detect when a branch has reconverged, 

during instruction fetch. Detecting reconvergence of multiple concurrent and nested branches 

is a challenge that needs to be addressed efficiently to achieve high branch coverage with the 

nearest reconvergent point (highest performing). 

The control-flow stack (CFS) is a hardware mechanism, which enables robust and 

accurate detection of reconvergent points in the fetch stream. 

4.2.1 Single branch 

We will address how reconvergence is detected for the simplest control-flow construct, a 

single branch that does not encompass any branches or calls. 

To detect the reconvergence of a single branch, a stack with depth one is sufficient. 

When a branch is dispatched, its reconvergent PC is pushed onto the CFS top-of-stack. The 

reconvergent point in the dynamic instruction stream is detected by comparing the PCs of 

newly dispatched instructions to the reconvergent PC at the top-of-stack. If there is a match, 

then the branch corresponding to the current top-of-stack has reconverged and we pop the 

top-of-stack entry. This frees the stack to be used by other branches and marks the beginning 

of the control-independent instructions. However, if the branch corresponding to the top-of-

stack completes before reconvergence is detected, then detecting reconvergence is no longer 

necessary and we can pop the top-of-stack for future branches to utilize it. 

Therefore, the CFS top-of-stack can be freed using either of two criteria: 

1) Popping the top-of-stack when reconvergence is detected. 
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2) Popping the top-of-stack when the corresponding branch completes. 

4.2.2 Nested branches 

To support multiple nested branches concurrently, the mechanism employs a multiple-

entry stack. When we see a new branch, we push its reconvergent PC on to the stack making 

it the new top-of-stack. Assuming correct reconvergent points, we are assured to see the 

reconvergent PC in the top-of-stack entry before any reconvergent PCs in other stack entries. 

This is true because all reconvergent points are, by definition, immediate post-dominating 

points. Like in the single branch scenario, the top-of-stack is popped when its reconvergent 

PC is detected. This exposes the next stack entry as the new top-of-stack and its reconvergent 

PC as the new monitoring candidate. 

Branches that execute before reconverging no longer need their stack entries. Unlike the 

single branch scenario, the stack entry being removed may not always be located at the top of 

the stack. Removing stack entries in the middle of the stack may violate normal stack 

semantics that only support pushing and popping. To address this problem, two 

implementations are possible: 

1) The first solution delays removing entries from the middle of the stack until popping 

is possible. When a branch completes, its corresponding stack entry is marked as 

invalid. If an invalid entry becomes the top-of-stack or the bottom-of-stack, the 

invalid entry is removed using normal popping. This solution maintains the simple 

semantics of the stack at the expense of delaying the freeing of stack entries. There is 

no extra cost associated with popping multiple entries at either end of the stack, 
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because this simply involves moving the head or tail pointer to the next active entry 

in the stack. 

2) If immediate stack entry removal is desired, a stack implementation that can collapse 

away entries is necessary. This implementation is more complex but yields higher 

utilization of the stack. Invalid entries need not occupy stack entries for a long time. 

The size of the stack dictates the number of nested branches (case 1 above) or nested 

unresolved branches (case 2 above) that can be monitored concurrently. If the stack is full, 

we no longer can detect reconvergence for new branches. Branches with no stack entry are 

forced to “give up” their reconvergent points. However, branches with no stack entry can 

inherit the reconvergent point of the closest encompassing branch, located on the top-of-

stack. This is correct because the reconvergent points of encompassing branches satisfy the 

criteria of being post-dominators for inner branches. Reconvergent point sharing is discussed 

in the more detail in the next section. 

4.2.3 Reconvergent point sharing and CFS merging 

When a branch is dispatched, we normally push its reconvergent point on the CFS. 

However, some branches may not have reconvergent points. This can occur either because 

the compiler or reconvergence predictor failed to provide a valid reconvergent point, or 

because the branch was forced to give up its reconvergent point because the CFS is full. 

These branches can still benefit from control-independence by inheriting the encompassing 

branch’s reconvergent point. The closest active (unresolved) encompassing branch can be 

found on the CFS top-of-stack. The branch simply inherits the encompassing branch’s 
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reconvergent point. In addition, some branches may find that the CFS top-of-stack already 

has the same reconvergent point, anyway. 

Some branches may have the same static reconvergent point. Programming constructs 

such as the “switch” statement contains many branches that converge at the end of the switch 

statement. More generally, branches may share dynamic reconvergent points. There are many 

cases in which multiple dynamic branches share the same reconvergent point. A common 

example is the multiple instances of the backward branch of a loop where they all have the 

loop exit as a reconvergent point. Fortunately, the CFS can easily detect cases in which 

multiple branches have the same dynamic reconvergent point. 

If the newly dispatched branch does not have a reconvergent point, or if its reconvergent 

PC matches the reconvergent PC at the CFS top-of-stack, or if the CFS is full, then the new 

branch and the branch corresponding to the CFS top-of-stack will share the reconvergent 

point of the CFS top-of-stack. In this case, the new branch does not push a new entry onto the 

CFS, implicitly “merging” with the CFS top-of-stack. Hence, merged branches share the 

same stack entry. When the reconvergent point corresponding to the top-of-stack is 

dispatched, we pop the top-of-stack and detect reconvergence for all merged branches at 

once.  

If all merged branches complete before detecting their shared reconvergent point, then 

the shared CFS entry can be freed. The CFS accomplishes this by maintaining a branch 

merge counter for each CFS entry. When a newly fetched branch merges with the CFS top-

of-stack, the branch merge counter for that entry is incremented. When a branch completes, 

the corresponding branch merge counter is decremented (assuming the reconvergent point 
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has not been detected yet). If the branch merge counter reaches zero before detecting the 

reconvergent point, then the CFS entry can be freed. 

4.2.4 Recursion 

Correct functioning of the CFS is based on the fact that, when trying to detect 

reconvergence of a specific branch, the first occurrence of its reconvergent PC is the correct 

reconvergent point that post-dominates the branch. However, due to recursion, the CFS may 

encounter a reconvergent PC that matches the top-of-stack mistakenly. This reconvergent PC 

is actually a different dynamic instance of the reconvergent PC that does not post-dominate 

the initiating branch. 

 
Figure 22. Function “foo” recursively called. 

To illustrate this problem, Figure 22 shows a dynamic sequence of instructions where 

function “foo” is called recursively. Instructions are shown with their PCs. The reconvergent 

point of the branch at PC 10 is located at PC 30. If we follow the instruction sequence in the 

Foo():

 20: Call Foo()

40: Return

10: Br

30: Reconv

Foo’():

40': Return

10': Br

30': Reconv
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example initially assuming an empty CFS, the branch “10: Br” will push the reconvergent PC 

30 onto the stack. Next, we will encounter the call instruction which will take us to a new 

instance of the “foo” function labeled “foo’”. The branch “10’: Br” will try to push its 

reconvergent PC onto the CFS, only to merge since it also has 30 as its reconvergent PC. 

This is not a problem itself, since the reconvergent PC of the first branch post-dominates the 

second branch. Next, we encounter instruction “30’: Reconv” and are forced to pop the stack 

prematurely since 30 matches the CFS top-of-stack. However, this reconvergent point does 

not satisfy the criterion of being a post-dominator of the outer branch “10: Br” and hence is 

an incorrect reconvergent point. 

If instruction “10: Br” happens to be a branch misprediction, the incorrect reconvergent 

point may cause us to corrupt program state during recovery. As we discard the incorrect CD 

path, some incorrect instructions will persist by mistake. Instructions between PC 30’ (the 

perceived reconvergent PC) and PC 30 should have been discarded. However, because of 

premature reconvergence, these instructions remain, causing incorrect program behavior. 

To address this problem, we make the reconvergence test definitive by tracking call 

depth in the dispatch stage and including call depths in CFS entries. In other words, if the 

new branch’s reconvergent PC and call depth match the CFS top-of-stack, then the branches 

have the same dynamic reconvergent point. Otherwise, these reconvergent points are 

different although they share the same PC. Therefore, the reconvergent point is defined by 

both the reconvergent PC and the call depth of the reconvergent instruction. This 

distinguishes the two reconvergent PCs and, hence, prevents premature reconvergence. From 

the previous example, PC 30 will not match PC 30’ because of the difference in call depth. 
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4.2.5 CFS violation detection and recovery 

As a consequence of using heuristics or dynamic hardware predictors to predict 

reconvergent points, an incorrect reconvergent point may be predicted. An incorrect 

reconvergent point does not post-dominate the branch it belongs to; hence, this branch cannot 

be covered by control independence. The incorrect reconvergent point also affects all 

encompassing branches (lower stack entries), by preventing them from detecting their 

reconvergent points. This is a consequence of the incorrect reconvergent point tying up its 

CFS entry until its branch resolves. This degrades performance, as we lose opportunity to 

employ control independence on the branch with the incorrect reconvergent point and for the 

encompassing branches below it in the CFS. 

It is crucial to detect incorrect reconvergent points promptly to minimize their negative 

performance effects. There are three symptoms of incorrect reconvergent points that can be 

used to identify them. 

1) Leaving branch frame: By comparing the CFS top-of-stack call depth with the 

currently dispatched instruction’s call depth, we can detect when we leave the frame of 

the reconvergent point. This is detected when a call depth lower than that of the CFS 

top-of-stack has been encountered. Since we define a reconvergent point to be the pair 

of PC and call depth, then a reconvergent point must be in the same function (frame) as 

that of the branch. Otherwise, the call depth portion of the reconvergent point will 

never be satisfied (except in another instance of the function, which is wrong). Since 

there is no chance to detect the reconvergent point at this time, it fails the branch post-
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dominating test. So, the concerned CFS entry must contain an incorrect reconvergent 

point. 

2) Encompassing branch reconvergence: If an encompassing branch detects its 

reconvergent point before the CFS top-of-stack branch does, then this implies that the 

CFS top-of-stack contains either an incorrect reconvergent point or sub-optimal 

reconvergent point. In either case, it is far more valuable to use the encompassing 

branch’s reconvergent point instead. To detect this scenario, the CFS needs to be 

modified. Instead of only comparing the CFS top-of-stack to newly dispatched 

instructions for a match, we need to compare all CFS entries in parallel. This is 

feasible for CFSs with relatively few entries, but may have power implications if the 

number of entries is large. Fortunately, the CFS size is a function of the maximum 

number of unresolved nested branches covered by control independence (which tends 

to be small for most benchmarks). 

3) Exceeding region size: Leveraging the provided maximum region size of a branch 

region, we can detect anomalies. One possible reason for exceeding the maximum 

region size is having an incorrect reconvergent point. Although this test does not 

conclusively say that a reconvergent point is incorrect, it does give a strong indication 

of problem. To implement this check, we would need to add a counter to each CFS 

entry. Incrementing is done when instructions dispatch. When any counter exceeds the 

maximum region size, we can flag a possible incorrect reconvergent point. 

If the violation is detected on the first pass before servicing a branch misprediction, then 

we can repair the CFS. Two repair policies are possible. First, we could flush the whole 
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stack, forcing all branches on the stack to use squash-based branch recovery (since no 

reconvergence will be detected). The second approach is higher performing and attempts to 

merge the violating entries with the next available non-violating entry in the hope that that 

entry will reconverge correctly and some control independence benefit will be preserved. If 

no entries are available to merge with, then the violating entry is removed and conventional 

(full) recovery is used for the concerned branch. 

If the violation is detected during branch misprediction recovery, then we must forego 

selective recovery and fall back to conventional (full) recovery (simply do not reconverge 

and discard all CI instructions). 

4.2.6 Additional CFS functions 

The CFS is an essential mechanism for control independence that enables us to cope 

with complex control-flow constructs simply. The usefulness of the CFS can go beyond its 

main function of detecting reconvergent points. The CFS can also be used to propagate 

control dependence vectors if desired. The control dependence vector identifies all branches 

that an instruction depends on from a control-flow standpoint. These vectors are computed by 

setting all the bits corresponding to branches currently on the stack. The control dependence 

vectors are useful in some control independence implementations that require selective 

squashing of the CD instructions (note that TCI does not require this). When the CD 

instructions of a given branch need to be squashed, the bit corresponding to the branch is 

asserted and instructions that have that bit set in their vectors are squashed. 

Additionally, the CFS can detect looping behavior in general through its merging ability. 

When branches merge their reconvergent points on the CFS, this is a sign of a possible loop. 
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The loop count can be estimated by the number of reconvergent point merges divided by the 

number of unique branch PCs being merged. One advantage of the CFS over using heuristics 

to detect loops (backward branches) is that it can detect looping behavior even in the absence 

of a traditional looping construct. 

Finally, the CFS can be used as a method to optimize the global history of the branch 

predictor. By observing that encompassing branches’ outcomes do not change between the 

different dynamic instances for a given control-dependent branch, we can exclude their 

history bits from the global history, allowing for longer history lengths. The reasoning for 

this phenomenon is that, for the concerned branch to be fetched, encompassing branches 

have to take a given control-flow direction, which is constant. Therefore, the encompassing 

branches do not add any information toward the outcome of the predicted branch. One 

concern needs to be addressed for loops that contain no internal branches, while using this 

optimization; in this case, the loop branch would not see any history bits from previous loop 

iterations. This can possibly degrade branch prediction accuracy as the predictor would not 

be able to identify the loop exit. Note that using the CFS to optimize global history was 

proposed by my colleague, Vimal Reddy.  

4.3 Identifying CIDD instructions 

Identifying the reconvergent point enables us to mark the beginning of the control-

independent (CI) instructions. Furthermore, we need to be able to distinguish between 

control-independent data-independent (CIDI) and control-independent data-dependent 

(CIDD) instructions. CIDD instructions are influenced by the outcome of the branch, as their 

outcomes may change depending on the control-flow path traversed. This indirect 
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dependence on the branch is caused either by register data dependencies or memory data 

dependencies. 

4.3.1 Register dependencies (Influenced Register Set (IRS)) 

In an out-of-order superscalar processor, there are potentially many versions of a given 

architectural register at any given time. Instructions have to execute with the correct physical 

register mapping (source names) to ensure correct program execution. In conventional 

processors, in-order register renaming ensures that instructions always get the newest 

physical register mappings in the rename map.  

Control independence violates in-order register renaming by preserving CI instructions 

when a branch misprediction is detected. Hence, the CI instructions are renamed before the 

correct CD instructions are fetched, making some of their source names potentially stale. 

Physical register mappings are altered during branch misprediction recovery because of 

either squashing the incorrect CD path of the branch, which could remove some register 

productions, or fetching the correct CD path of the branch, which may introduce new register 

productions. Hence, CI instructions must be repaired to ensure correct program behavior. 

CI instructions can be broken down into two groups, CIDI and CIDD instructions. CIDI 

instructions are not affected by changes in register mappings at all. Their source names stay 

the same. On the other hand, CIDD instructions have one or more of their source names 

change during branch misprediction recovery. In addition, instructions dependent on these 

root CIDD instructions directly or indirectly are also considered CIDD instructions.  

Since the cause of register mapping changes for root CIDD instructions is the insertion 

or removal of register productions in the CD region of the branch, we must identify register 
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productions on all traversed control-flow paths in the CD region. This collection of register 

productions is called the Influenced Register Set (IRS). Each bit in the IRS corresponds to a 

single architectural register. Hence, the size of the IRS is bounded by the number of 

architectural registers specified by the ISA. For example, if the bit corresponding to R5 is set, 

then any CI instruction consuming a version of R5 from before the reconvergent point, 

directly or indirectly through a chain of CIDD instructions, is considered CIDD. With the 

help of the IRS, we have the information necessary to identify CIDD instructions allowing us 

the opportunity to service them. 

The IRS can be easily generated by a compiler or a hardware predictor. 

4.3.1.1 Generating the IRS using a compiler 

The compiler would collect all register productions between the branch and its 

reconvergent point statically using basic data-flow analysis. This information is then 

conveyed to the processor with a new ISA instruction. For example, in the PISA ISA, a new 

64-bit instruction specifies the IRS. PISA has 31 integer (excluding register 0), 16 double-

precision floating-point, and 3 other (HI, LO, FCC) logical registers. 16 bits are used for the 

floating-point registers. If any of these are set, FCC is implied to be in the IRS. 1 bit is used 

for both the HI and LO register. Thus, 48 bits encode the IRS. The IRS instruction is inserted 

before each branch whose reconvergent PC is specified. 

4.3.1.2 Generating the IRS using the reconvergence predictor 

Using a hardware predictor to predict the IRS is also feasible. The IRS is highly 

predictable given a predictable reconvergent point. A learning mechanism is added to the 

dynamic reconvergence predictor to collect a branch’s IRS. As the predictor monitors retired 
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instructions for reconvergence, it accumulates logical registers being written to after the 

branch but before reconvergence is detected. Influenced registers are also accumulated across 

all seen retired paths. This provides a way to identify all productions for a given branch’s 

control-dependent region. The IRS must be accurate. The use of confidence ensures 

repetition, so that enough different paths are traversed through a branch’s CD region to yield 

a representative IRS. 

4.3.1.3 Performance impact of IRS 

The performance gain of covering a branch misprediction with control-independence is 

directly related to the number of CIDI instructions preserved. A high percentage of CIDI 

instructions in the CI region is desirable and would leave few CIDD instructions needing 

recovery, improving performance. The number of registers set in the IRS affects the number 

of CIDD instructions in the CI region.  

If all bits in the IRS are set, then all instructions in the CI region would be CIDD 

instructions and we would have to repair the whole CI region. This is tantamount to 

conventional (full) branch misprediction recovery. On the other hand, if none of the bits in 

the IRS are set, then all instructions are CIDI instructions (except for violating loads and their 

dependents) and the CI region need not be repaired. The number of CIDD instructions is also 

affected by which registers are set in the IRS and what is the nature of the data dependencies 

in the targeted CI region. For example, if the stack pointer register (R29 in PISA) is set in the 

IRS, then the number of CIDD instructions can be large. This is the case because stack 

pointer arithmetic forms a long serial dependence chain and because the address calculations 

for many stack loads and stores depend on it. 
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Therefore, a sparse, optimized IRS is favorable. If we use an overly conservative IRS, 

the number of perceived CIDD instructions will increase and the number of CIDI instructions 

will decrease, which will reduce the advantage we have over conventional (full) branch 

recovery. On the other hand, if we use an overly optimistic IRS, there may be many 

violations (Section  4.3.1.5) causing frequent downgrades to conventional recovery. 

Ideally, the IRS would be sparse without leading to lost coverage. The optimal/actual 

IRS would only contain register productions on the incorrect control-flow path of the 

mispredicted branch and register productions on the repaired correct control-flow path. The 

actual IRS is completely known only after recovering from a branch misprediction at the 

point of reconvergence. At that point, the processor has examined both the correct CD 

instructions and incorrect CD instructions. If the IRS is required before recovering from a 

branch misprediction, then we must rely on a speculative IRS provided by the compiler or the 

reconvergence predictor. The compiler and the reconvergence predictor can achieve the 

optimal/actual IRS in some situations where the targeted branch only has two possible paths 

from the branch to its reconvergent point. However, when branches have more than two 

control-flow paths leading to the reconvergent point, conservative IRSs will be produced. 

Regions with multiple control-flow paths occur because of branches with multiple targets 

such as jump indirect instructions (JALR and JR) or because of internal control-flow 

(branches, loops, etc.) that increases the number of unique paths from the branch to its 

reconvergent point. 
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4.3.1.4 Optimizing the IRS 

Due to the limited number of architectural registers, the compiler, during the register 

allocation phase, is forced to spill registers onto the stack. Spilling to the stack is also used to 

deal with function calls to avoid caller/callee register conflicts. The compiler has set 

conventions on how to handle saving registers to allow for correctness across function calls. 

Caller-saved registers are registers that are saved if the calling function is using these 

registers and they are its responsibility. Callee-saved registers are registers that the caller 

assumes will be intact after returning from the called function and can assume their 

correctness. This pact is guaranteed by the callee function. 

Based on the observation that there is typically no net change in callee-saved registers 

before and after a subroutine, we can optimize the IRS generation criteria to reduce the 

number of registers set in it. Instead of collecting all register productions between a branch 

and its reconvergent point, the optimized IRS would only collect register productions in its 

call depth level between the branch and its reconvergent point (function calls would set their 

return registers in the IRS). Hence, any productions observed in internal functions (higher 

call depths) are omitted from the optimized IRS. The optimized IRS is not inherently safe, as 

some CI instructions may receive the mapping of one of the omitted register productions 

leading to lost coverage as some CIDD instructions are considered CIDI. To make the 

optimized IRS safe, we need to isolate the effect of the omitted registers by short-circuiting 

their mappings with their corresponding mappings from before the branch. This is guaranteed 

to be correct because the callee function preserves the value of these registers by saving and 

restoring them. Leveraging the control-flow stack, the branch would checkpoint any register 
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mapping not in the optimized IRS. If the branch resolves before reconverging, then the CFS 

entry will be freed and the IRS is not needed. On the other hand, if the reconvergent point is 

reached first, then the top of the CFS loads the saved register mappings into the rename map. 

This allows the CI instructions to short-circuit the omitted IRS productions safely. 

4.3.1.5 IRS violation detection and recovery 

The compiler or reconvergence predictor provided IRS may not match the optimal/actual 

IRS. It can be either too conservative or overly optimistic. If the IRS has additional bits set, it 

is conservative. In this case, control independence will function correctly, but at an 

opportunity cost of identifying some CIDI instructions as CIDD. However, if the IRS is too 

optimistic, then some CIDD instructions needing repair after a branch misprediction will be 

neglected (they are incorrectly classified as CIDI). This prevents control independence from 

successfully repairing a branch misprediction. Fortunately, an inadequate IRS can be 

detected, by comparing the actual IRS (observed by the processor) to the predicted IRS. 

The actual IRS is composed of register productions by incorrect and correct CD 

instructions. After fetching the incorrect CD instructions and detecting the reconvergent 

point, the predicted IRS is augmented by the actual IRS registers observed thus far. Since no 

CI instructions have been fetched yet, this allows us to repair the predicted IRS preventing 

future IRS violations. Later, when a branch misprediction is detected, recovery includes 

fetching the correct CD instructions until the reconvergent point is reached again. At this 

point, the actual IRS is compared with amended predicted IRS. If the actual IRS contains 

registers not present in the amended predicted IRS, then this is a true IRS violation. To 
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recover from an IRS violation, we are forced to fall back to conventional (full) branch 

misprediction recovery, discarding all CI instructions. 

4.3.2 Memory dependencies (load poisoning) 

We have seen how a branch misprediction can affect CI instructions indirectly through 

register dependencies. This effect on CI instructions is further extended through memory 

dependencies. Specifically, CI load instructions may be affected by CD store instructions. 

For a load to execute correctly, it must receive the most recent value of the memory address 

it is loading. A branch misprediction can introduce false store instructions on the incorrect 

CD path, or delay correct store instructions on the correct CD path, which can influence a CI 

load’s result. Load instructions that are influenced by stores in a given branch region are 

considered CIDD with respect to that branch. During selective branch misprediction 

recovery, CIDD loads must be re-executed, like other CIDD instructions. For control 

independence to be leveraged, it is necessary that CIDD load instructions produce correct 

results; otherwise, we will lose control independence coverage and need to fall back to 

conventional (full) recovery. Hence, identifying CIDD loads through accurate memory 

dependence prediction is crucial for good performance. 

Unlike register data dependencies, which are bounded by the number of architectural 

registers and can be compactly represented and easily predicted, memory dependencies are 

more dynamic. Fortunately, memory dependencies are somewhat stable (although not as 

stable as register dependencies) and relationships between loads and stores can be accurately 

predicted. Traditional memory dependence predictors, such as store-sets (Chrysos, et al., 
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1998), have been successful in providing accurate results in the context of aggressive load 

speculation in superscalar processors. 

4.3.2.1 Store/branch set predictor 

Traditionally, the store-set predictor can only deal with stores currently in the window. 

However, in the context of control independence architectures, fetching of stores may be 

delayed until a branch misprediction is serviced. In a control independence architecture with 

unresolved branch mispredictions, the store-set predictor may decide mistakenly that a given 

load is not CIDD and allow it to execute as such. This is wrong, because selectively 

recovering a branch misprediction may introduce some new stores that were not available in 

the window when the store-set predictor made its prediction. To overcome this problem, the 

store-set predictor needs to be modified, making it aware of potential stores introduced late, 

during selective branch misprediction recovery. 

Branch mispredictions covered by control independence introduce holes into the 

instruction stream. A CI load accessing the store-set predictor before all prior branch 

mispredictions have been resolved, will not observe the complete instruction stream, leading 

to an incorrect memory dependence prediction. This situation can be identified through the 

branches themselves. A low-confidence branch and its CD region represent a possible hole in 

the instruction stream, where store instructions may be removed or inserted. Therefore, low-

confidence branches act like proxies for stores that may be removed or inserted due to 

control-flow changes. 

In addition to the normal store-to-load memory dependency (store set) tracked by 

memory dependence predictors, the modified predictor will need to track dependencies 
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between low-confidence branches and loads (branch set). The store/branch set predictor now 

has the capability to detect possible holes in the instruction stream (that typically influence a 

given load) and delay the final execution of influenced loads until the low-confidence 

branches have been resolved. 

The CD region, a possible hole in the instruction stream, can be identified by either the 

branch or its reconvergent point. In the store/branch set predictor, using the reconvergent PC 

is more beneficial than using the branch PC for three reasons: 

1) The reconvergent point can represent multiple branches (CFS merging). This reduces 

the number of points needed to be tracked by the predictor. 

2) The reconvergent point is located at the point of separation between the CD 

instructions and CI instructions. When CI loads access the memory dependence 

predictor, the reconvergent point will act as a barrier between the possibly incorrect 

CD instructions and correct CI instructions. 

3) If a branch misprediction is being serviced, the branch may retire before servicing is 

completed. By using the reconvergent point, we prevent the load from accessing the 

partially repaired CD region. 

4.3.2.2 Load violation detection and recovery 

As a consequence of load speculation, load violations may occur. In the context of 

conventional superscalar processors with conventional (full) branch misprediction recovery, 

load violations are detected by broadcasting the addresses of stores as they execute to 

younger loads. If a younger load received its value from a store older than the broadcasting 
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store or from the cache, and its address matches the broadcasted store address, then a load 

violation is detected. 

In the context of selective branch misprediction recovery, load violation detection needs 

to also address the possibility of store instruction removal and re-execution. So, in addition to 

broadcasting new store addresses to younger loads, we also need to broadcast removed store 

addresses to younger loads. In control independence architectures, store instructions can 

cause load violations by inserting a new address, removing an old address, or changing an 

address. Here is a list of the events causing load violations and the actions required to detect 

the violations: 

1) Out-of-order execution of a store instruction or late insertion of correct CD store 

instruction: broadcast new address. 

2) Removing a CD store instruction: broadcast old address. 

3) Re-executing a store instruction: If the address changes, then broadcast both old and 

new addresses. If only the value changes, then just rebroadcast the old address. 

Once a load violation has been detected, recovery is required to achieve correct program 

behavior. Recovery can be done by either redoing all the work after the load violation, or 

attempting to selectively repair it. In control independence architectures, the number of load 

violations can increase significantly, due to the holes in the dynamic instruction stream, when 

compared to processors implementing conventional (full) branch misprediction recovery. 

Fortunately, the store/branch set predictor can identify CIDD loads accurately, which reduces 

the number of load violations introduced by the holes in the dynamic instruction stream. 
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Therefore, redoing all work after a load violation may be a viable alternative with an accurate 

store/branch set predictor. 



 

 
77 

Chapter 5  

Control independence: Analysis of implementation aspects 

and performance factors 

Control independence architectures need to accomplish two tasks to recover from a 

branch misprediction successfully. First, they must repair the CD region of the mispredicted 

branch. This involves discarding incorrect instructions on the mispredicted control-flow path 

and replacing them with the correct instructions from the branch’s actual control-flow path. 

Second, they must repair the CI region of the mispredicted branch. The CI region is 

composed of CIDI and CIDD instructions. CIDI instructions are correct and need not be 

repaired. CIDD instructions indirectly depend on the branch outcome through data 

dependencies and need to be repaired by correcting their source values and then re-executing 

them. 

This chapter analyzes implementation aspects and performance factors of repairing the 

CD region (Section  5.1) and the CI region (Section  5.2). 

5.1 Repairing the CD region 

To implement control independence, the processor must be able to repair the CD region. 

This involves two steps. The first step is to discard the incorrect CD instructions from the 

middle of the window. This entails reclaiming the resources they hold and making them 

available to future instructions. The second step is to fetch the correct CD instructions and 

insert them into the middle of the window. This requires allocating the newly fetched 
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instructions resources, so they can execute. These two steps are not fully supported by 

traditional superscalar processors. 

Instructions can hold many types of resources that include: reorder buffer (ROB) entries, 

load/store queue (LSQ) entries, issue queue (IQ) entries, branch checkpoints, and physical 

registers. Traditional processors manage (allocate and reclaim) these resources in different 

ways, some compatible with control independence while others are not. These resources can 

be grouped based on the way they are managed, into unordered resources and ordered 

resources. 

5.1.1 Unordered resources 

Unordered resources do not maintain order between allocated entries. Entries can be 

allocated in any order and reclaimed in any order. Processors use unordered resources when 

the order between allocated entries does not have to obey a specific order and when entries 

must be allocated and/or reclaimed out-of-order. The flexible nature of unordered resources 

makes them compatible with control independence’s requirement to insert instructions 

(allocate resources) in the middle of the window and remove instructions (reclaim resources) 

from the middle of the window. In addition, unordered resources’ ability to reclaim 

resources quickly, out of program order, makes them suitable to use with performance-

critical resources. Branch checkpoints and issue queue entries are examples of performance-

critical unordered resources. 

In traditional superscalar processors, instructions get allocated IQ entries at the dispatch 

stage in program order. The IQ entries are reclaimed out-of-order when their instructions 

issue. When a processor detects a branch misprediction, some speculative instructions need 
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to be discarded and their resources freed. IQ entries can be reclaimed from misspeculated 

instructions in two ways: 

1) Wait for the misspeculated instructions to issue as normal and free their IQ entries. 

2) Identify the misspeculated instructions in the IQ and free their entries. This can be 

accomplished by walking the ROB and using the IQ entry numbers stored in it, or by 

using control dependence vectors to free the IQ entries in bulk (Section  4.2.6). 

Branch checkpoints are allocated to branches to recover from possible mispredictions. 

Each branch receives a checkpoint at the dispatch stage in program order. When a branch 

executes (out-of-order) and a misprediction is not detected, the branch can safely free its 

checkpoint. Branch checkpoints are performance-critical resources and should be freed as 

soon as possible. This mechanism stays the same with control independence and no 

modifications are needed. 

5.1.2 Ordered resources 

Ordered resources maintain a specific order between allocated entries. Entries usually 

can only be allocated and reclaimed at either end of the ordered list. Processors use ordered 

resources when program order needs to be maintained between the allocated entries, for 

correct functionality and/or performance. An additional advantage of an ordered resource is 

its ability to efficiently allocate and reclaim contiguous resources in bulk at either end of the 

ordered list. The strict order required by ordered resources makes them incompatible with 

control independence’s requirement to insert instructions (allocate resources) in the middle of 

the window and remove instructions (reclaim resources) from the middle of the window. The 

ROB, LSQ, and RF are examples of ordered resources. 
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The ROB requires its entries to be ordered so that it can retire instructions in the correct 

program order. The LSQ requires order to correctly enforce memory data dependencies 

between stores and loads in the window. The LSQ also requires order to commit stores in 

program order to the cache. 

The ROB and load/store queues are circular FIFO structures. Instructions are allocated 

entries at the end of the FIFOs by incrementing the tail pointers. Entries are reclaimed in two 

ways, depending on if the instructions are correct or misspeculated. Correct instructions free 

their entries at retirement by incrementing the head pointer. Misspeculated instructions 

logically after a mispredicted branch free their entries in bulk by moving the tail pointer to 

the mispredicted branch’s entry. Notice that allocation and reclamation happen at the head 

and tail of the FIFOs. FIFOs do not support arbitrary insertion and removal from the middle, 

which makes these resources incompatible with control independence in their current form. 

To make the ROB and LSQ compatible with control independence, modifications need 

to be adopted to enable insertion and removal in the middle of the window. Four possible 

solutions can be adopted: 

1) Collapsing/expanding buffer: By replacing the simple FIFO with a 

collapsing/expanding buffer, we can insert and remove instructions in the middle of 

the FIFO. The incorrect CD instructions are removed (collapsed away) by shifting the 

CI instructions in their place. Inserting the correct CD instructions requires expanding 

the buffer in the middle, between the branch and its CI instructions, to make space for 

the new instructions. The collapsing/expanding buffer is complex and power hungry. 

This implementation may also degrade performance by delaying servicing of a branch 



 

 
81 

misprediction. The buffer cannot collapse/expand entries in bulk and may need many 

cycles to complete the needed shifting of instructions. This delay increases the branch 

misprediction penalty. 

2) Linked-list: The ROB and the load/store queues can be managed as linked-lists of 

instructions, segments, or processing elements (Rotenberg, et al., 1999), instead of a 

circular FIFO, at the cost of extra complexity. This implementation is compatible 

with arbitrary insertion and removal of entries, making it a good match for control 

independence. However, a problem with linked-list implementations of the ROB and 

LSQ is the difficulty in sequencing, allocating, and freeing multiple sequential entries 

in parallel. With a FIFO, it is very simple to access sequential elements in parallel 

because the indices of a FIFO can be pre-computed from the head pointer. 

Conversely, the linked-list can only sequence a single entry at a time because the 

index of the next entry is stored with the previous entry and cannot be pre-computed. 

The use of multiple next pointers (example: next-pointer 1, next-pointer 2, etc.) in 

each entry can assist in this effort, at the expense of added management complexity 

and storage requirements. The use of coarse-grained linked-lists, such as segmented 

linked-lists, can also mitigate the problem, at the expense of internal fragmentation. 

3) Pre-allocation and delayed reclamation of resources: A less intrusive approach that 

allows the use of a FIFO is pre-allocation and delayed reclamation of resources. This 

solution avoids the complexity of linked-list designs and the latency for expanding a 

traditional FIFO. To allow easy insertion of CD instructions, one can estimate the 

maximum number of resources needed by the CD region and then pre-allocate these 
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resources (Cher, et al., 2001). Padding eliminates the need to expand the ROB and 

LSQ when inserting instructions in the middle of the window. Invalid entries (due to 

removing instructions or not using all reserved entries) are not reclaimed 

immediately. Instead, reclamation is delayed until invalid entries reach the head of the 

ROB or LSQ. Delayed reclamation and inaccurate pre-allocation of resources can 

cause internal fragmentation. This approach underutilizes the ROB/LSQ and may 

degrade performance. 

4) Temporary buffer assisted shifting: This method achieves the same goal as the 

collapsing/expanding buffer but with fewer downsides. After a branch misprediction 

is detected, this method starts copying the CI instructions into a temporary buffer in 

preparation for moving them to their new locations. After the new instructions have 

been inserted (the correct CD instructions overwrite the incorrect CD instructions), it 

is clear where the CI instructions buffered in the temporary buffer need to be copied. 

Delaying copying of CI instructions until the right location is known emulates the 

need to collapse and expand the buffer many times. This reduces the hardware 

complexity compared to a collapsing/expanding buffer. However, this method shares 

one downside with the collapsing/expanding buffer in that the shifting process may 

take many cycles when compared with a linked-list implementation of the ROB/LSQ. 

This solution is described in more detail in Section  6.3.1. 

Alternatively, a ROB-free checkpoint-based architecture may be used (Akkary, et al., 

2003) (Cristal, et al., 2004) (Cristal, et al., 2002). The solution substitutes fine-grain 

retirement using the ROB with coarse-grain retirement using checkpoints. By removing the 
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ROB, we are only left with the LSQ as an ordered resource in the processor to deal with. 

Identifying the synergy between control independence and ROB-free checkpoint-based 

processors is a contribution of this thesis and is explored in depth in  Chapter 6. 

Unlike the ROB and LSQ, the register file’s (RF) entries (physical registers) are not 

allocated and freed in program order, making it compatible with control independence. 

Unfortunately, conventional processors manage the freeing of RF entries using an ordered 

free list that is incompatible with control independence. 

The RF’s free list is ordered, giving the RF some ordered resource traits. 

Conventionally, the RF can reclaim physical registers in bulk after a branch misprediction 

like the ROB and LSQ. This is achieved by checkpointing the free list head pointer at 

branches, and restoring the checkpointed head pointer corresponding to a mispredicted 

branch. This single action bulk-frees the physical registers of all instructions – both CD and 

CI – after the mispredicted branch. Traditional management of the RF free list is 

incompatible with control independence. Simply restoring the free list head pointer to its 

checkpointed location at the mispredicted branch is not sufficient, because physical registers 

allocated to CI instructions must not be freed. Instead, selectively freeing physical registers 

requires walking the incorrect CD instructions to free only their physical registers. In 

addition, allocating new physical registers to the correct CD instructions in the middle of the 

window will require the order of the free list to be repaired (just like the ROB and LSQ). 

To address this issue, we propose using an alternate register freeing mechanism that does 

not rely on an ordered free list. Aggressive register reclamation does not use an ordered free 

list and is based instead on usage counters (Moudgill, et al., 1993) (Akkary, et al., 2003). A 
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register is freed once all known consumers read the register’s value and the register is no 

longer referenced by any checkpoint or rename map table. Leveraging aggressive register 

reclamation to manage the RF makes it fully compatible with control independence. This 

proposed solution is used in TCI ( Chapter 6) and is one of many novel contributions of this 

thesis.  

5.2 Repairing the CI region 

This section discusses implementation aspects and performance factors of repairing the 

CI region. The CI instructions are already in the window and need not be re-fetched. 

However, some CIDD instructions need to have their register or memory data dependencies 

repaired to reflect the repaired CD region and then all CIDD instructions need to be re-

executed. 

5.2.1 Repairing the data dependencies of CIDD instructions 

CIDD instructions are either directly data dependent on the CD region (direct CIDD) or 

indirectly data dependent on the CD region (indirect CIDD). Direct CIDD instructions have 

potentially stale source register names or stale memory dependencies, after repairing the CD 

region. Indirect CIDD instructions are data dependent on the direct CIDD instructions. 

Instructions that depend on indirect CIDD instructions are also indirect CIDD instructions. 

Direct and indirect CIDD instructions can be identified with the help of information provided 

by the CFS, IRS, and store/branch set predictor described in  Chapter 4. 

Repairing the direct CIDD instructions’ data dependencies involves repairing the register 

data dependencies and the memory data dependencies. Memory data dependencies need not 

be explicitly repaired. CIDD Loads will repair their memory data dependencies when they 
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are re-executed (they will have access to the repaired CD store instructions). On the other 

hand, register data dependencies need to be explicitly repaired before re-execution can start. 

Register data dependencies are repaired by correcting the source register names of direct 

CIDD instructions, linking them to their correct producers. 

Traditional processors with conventional (full) branch misprediction recovery do not 

support selectively re-renaming CIDD instructions that are already in the window. In the 

following three sub-sections, we look at three possible mechanisms (Seq CI, Proxy, and Seq 

CIDD) to achieve this goal and investigate their impact on a traditional processor’s 

performance and complexity. 

5.2.1.1 Sequencing CI instructions (Seq CI) 

One way to correct the CIDD instructions’ source register names is to use the same 

approach used by conventional (full) branch misprediction recovery to generate correct data 

dependencies. With conventional recovery, all instructions after the misprediction are 

squashed (incorrect CD instructions and CI instructions) and the correct instructions are 

fetched and renamed (correct CD instructions and CI instructions). Using this approach with 

control independence requires some modifications because the CI instructions are not 

squashed and need not be re-fetched. 

The modified approach would only squash the incorrect CD instructions and fetch the 

correct CD instructions, but would rename all instructions after the mispredicted branch 

(correct CD instructions and CI instructions). Since the modified approach does not re-fetch 

the CI instructions, it needs to sequence through the CI instructions already buffered in the 

processor. Therefore, this approach is referred to as sequence CI (Seq CI). 
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The Seq CI approach leverages the existing register rename stage of the processor to re-

rename all CI instructions after a mispredicted branch. In the re-renaming process, direct 

CIDD instructions’ source mappings are automatically repaired, reflecting the corrected 

control-flow (Rotenberg, et al., 1999) (Chou, et al., 1999). 

The advantage of Seq CI is that it uses the processor’s already available mechanisms to 

achieve its goal. However, the process of re-renaming all CI instructions is tantamount to re-

fetching all CI instructions, as implemented by conventional (full) recovery. This degrades 

the potential performance of control independence. Furthermore, Seq CI requires buffering 

all CI instructions in program order in the processor so that they can be sequenced in case of 

a branch misprediction. This requirement adds an ordered resource to the processor, similar 

to the ROB, which has the potential to further degrade performance and complicate the 

design of the control independence implementation. 

5.2.1.2 Proxy move instructions (Proxy) 

An alternative to re-renaming the CIDD instructions is to use proxy move instructions 

(Proxy). Proxy’s goal is to insulate the CIDD instructions from source name changes caused 

by repairing the CD region (Cher, et al., 2001) (Gandhi, et al., 2004). 

To implement the Proxy method, the processor needs to insert a proxy move instruction 

for each production in the CD region at the reconvergent point (between the CD instructions 

and CI instructions). The destination physical registers of the proxy move instructions are 

pinned. This ensures source names of direct CIDD instructions do not change with changing 

control-flow. After renaming the correct CD instructions, only the proxy move instructions 

need to be re-renamed to repair their source names. The proxy move instructions then 
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forward the values from their re-renamed source physical registers to their pinned destination 

physical registers. This assures that CIDD instructions will receive the correct source values 

during re-execution. 

CD region productions need to be identified to know which proxy move instructions to 

insert at the reconvergent point. This information can be provided by the IRS. In addition, to 

be able to re-rename the proxy move instructions, they need to be buffered in the processor. 

Proxy has the advantage of eliminating the need to re-rename CI instructions when 

servicing a branch misprediction, however, at the cost of extra resource pressure and 

renaming bandwidth for the added proxy move instructions. Extra physical registers, issue 

queue entries, etc. are consumed by the proxy moves. More importantly, Proxy’s resource 

overhead and rename overhead affects the performance of the system even when all branches 

are correctly predicted, forcing us to cover branches selectively for good overall 

performance. This problem is not present in the sequencing repair approaches (Seq CI and 

Seq CIDD). 

5.2.1.3 Sequencing CIDD instructions (Seq CIDD) 

The two re-renaming techniques discussed previously have opposing tradeoffs. On the 

one hand, the Seq CI approach has a high re-rename bandwidth requirement, but does not 

incur extra resource or execution bandwidth. On the other hand, the Proxy approach reduces 

the required re-rename bandwidth, but requires extra cycle-critical resources and execution 

bandwidth for the proxy move instructions. Ideally, we would like a solution that minimizes 

re-rename bandwidth while not requiring any extra cycle-critical resources. 
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This thesis introduces a new selective re-renaming mechanism. By pre-identifying the 

CIDD instructions during dispatch, this technique attempts to only re-rename the CIDD 

instruction stream and hence is called the sequence CIDD (Seq CIDD) approach. This 

approach has the potential to conserve re-renaming bandwidth compared to the Seq CI 

approach. 

Like the Seq CI approach, the Seq CIDD approach leverages the existing register 

renaming stage of the processor to repair the source names of the CIDD instructions. After 

renaming the correct CD instructions, Seq CIDD re-renames the pre-identified CIDD 

instructions, repairing their source names. The process of re-renaming only the CIDD 

instructions needs special care, as this instruction stream contains holes corresponding to 

absent CIDI instructions. 

Conventional register renaming requires processing instructions in program order to 

ensure that correct register linkages are produced. However, CIDD and CIDI instructions are 

interleaved, which makes conventional renaming inadequate for renaming only CIDD 

instructions. Figure 23 shows an example of a sequence of instructions from the CI region. 

Register R1 depends on the CD region, therefore, instructions with “*” are CIDD. When 

using the Seq CI repair mechanism, instruction #4 would receive a source mapping of P51 for 

R5, which is correct. However, renaming only the CIDD instructions would cause instruction 

#4 to receive P50 as a mapping for R5 during re-renaming, which is incorrect. This is a 

consequence of having holes in the CIDD instruction stream. To circumvent this problem, 

Seq CIDD requires identifying CIDI-supplied source registers, in the example of instruction 

#4 the source R5, and avoiding re-renaming of these source operands. Source operands not 
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re-renamed would need to reuse their old source names. A detailed control independence 

implementation using the Seq CIDD approach is presented in  Chapter 6. Note that our 

approach goes a step further, supplanting the CIDI-supplied source registers with their actual 

values. 

#1*: Add R5(P50), R1(P10), R2(P20) 

#2*: Add R3(P31), R1(P10), R5(P50) 

#3  : Add R5(P51), R4(P40), R6(P60) 

#4*: Add R7(P70), R1(P10), R5(P51) 

Figure 23. Sequence of instructions from the CI region. 

In addition to saving re-renaming bandwidth, Seq CIDD reduces the instruction 

buffering requirement compared to Seq CI. In Seq CI, all instructions need to be buffered 

(like in a ROB) in anticipation for a branch misprediction. However, in Seq CIDD, only the 

CIDD instructions need to be buffered. This is especially important when looking at very 

large instruction windows. 

5.2.2 Re-executing CIDD instructions 

After correcting the CIDD instructions’ source names, all CIDD instructions need to re-

execute to produce correct values. Re-execution of CIDD instructions is not fully supported 

by conventional processors. CIDD instruction re-execution requires all needed resources 

(issue queue entries and physical registers) be allocated (Section  5.2.2.1), and also requires 

that their source operands’ resources (physical registers) be available (Section  5.2.2.2). 
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5.2.2.1 CIDD instructions’ resources 

Re-execution (like normal execution) of CIDD instructions requires that they are 

allocated issue queue entries and destination physical registers. One approach to support re-

execution is to hold the resources (issue queue entries and physical registers) originally 

allocated to the CIDD instructions when they were first fetched and dispatched until the 

branch resolves (Hold IQ). This minimizes changes to the resource management of the 

processor. However, re-execution may occur many cycles after the first execution has 

occurred. Holding these cycle-critical resources for this whole period of time can create extra 

resource pressure. In turn, this can degrade performance compared to conventional 

speculation, which allows resources to be reclaimed aggressively (issue queue entries, and 

physical registers when using aggressive register reclamation) since full recovery squashes 

and re-fetches all instructions after a branch misprediction. 

Alternatively, the resources allocated to CIDD instructions can be released aggressively 

according to conventional speculation, and reallocated only when re-execution is needed 

(Drain IQ). So, after the CIDD instructions execute for the first time, they are free to release 

their resources. These CIDD instructions are buffered in an auxiliary re-execution buffer 

(RXB) for purposes of re-execution. After the branch misprediction is detected and during 

recovery of the CI region, all CI (Seq CI) or only CIDD (Seq CIDD) instructions are re-

renamed. During re-renaming, CIDD instructions are re-dispatched into the issue queue and 

reallocated destination physical registers. This provides the CIDD instructions with the 

needed resources for re-execution. Therefore, Drain IQ trades the resource pressure of Hold 
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IQ for additional re-rename bandwidth needed to reallocate resources for the CIDD 

instructions. 

5.2.2.2 CIDI instructions’ resources 

In addition to the resources held by the CIDD instructions themselves, re-execution 

requires that all CIDD instructions’ source operands be allocated physical registers. Source 

values feeding CIDD instructions, but not produced by other CIDD instructions, need to be 

available for correct execution. These producers may include CIDI instructions, CD 

instructions, or instructions from before the branch. Note that latest producers of architectural 

registers from before the reconvergent point (CD instructions and instructions from before 

the branch) will still have their physical registers allocated (hence referencable) because their 

mappings will be live in the rename map used for repairing the CD region.  On the other 

hand, CIDI instructions are co-mingled with the CIDD instructions and need to be dealt with 

specially. One solution is to force all CIDI instructions to hold their resources. This solution 

makes control independence architectures inefficient and defeats the purpose of resource-

efficient techniques such as aggressive register reclamation. 

Alternatively, the CIDI instructions can release their physical registers by depositing 

their values in the RXB (in program order with respect to interleaved CIDD instructions). 

Hence, if re-execution of the CIDD instructions is required, the CIDI instructions can be 

reallocated physical registers and their saved destination values can be reloaded into the 

newly allocated physical registers. One could further optimize this solution by allowing the 

CIDD instructions to replace their CIDI-supplied source register mappings with the actual 

checkpointed values from the CIDI instructions. This avoids revisiting CIDI instructions 
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altogether, further increasing overall efficiency by virtue of (1) not including CIDI 

instructions in the RXB, (2) not re-renaming CIDI instructions (re-renaming bandwidth), and 

(3) not allocating registers to CIDI instructions during recovery. 

5.2.3 Control independence configurations 

Different control independence implementations have different resource and bandwidth 

overheads, depending on the way they fulfill the requirements to repair the CD and CI 

regions. In this section, we will focus on the performance impact of the different approaches 

to repair the CI region, on a common substrate. 

For a common substrate, we choose a ROB-free checkpoint-based processor with 

aggressive register reclamation, for its compatibility with control independence. First, this 

substrate simplifies the repair of the CD region by minimizing the number of ordered 

resources used in the substrate. The ROB, which traditionally was a major complication for 

control independence implementations, is removed, allowing for arbitrary removal and 

insertion of CD instructions. In addition, using aggressive register reclamation allows the 

register file to be fully compatible control independence (avoid managing the RF with the 

ordered free list). Physical registers are now reclaimed based on usage counters and not the 

ROB. 

Second, this substrate is resource-efficient, which allows it to construct a large window 

of instructions with small cycle-critical resources. Interestingly, control independence’s 

ability to tolerate branch mispredictions, avoiding squashing of CI instructions, also permits 

creating a large window of useful instructions. Hence, the resource efficiency of the 
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checkpointed substrate coupled with the branch misprediction tolerance of control 

independence form a symbiotic relationship. 

The only remaining complication in repairing the CD region involves the LSQ. For this 

ordered resource, we will employ the temporary buffer assisted shifting solution. This 

minimizes the effect of repairing the CD region, allowing us to focus on repairing the CI 

region. 

The CI region repair process involves repairing the CIDD instructions’ source register 

mappings and then re-executing the CIDD instructions to generate correct results. Different 

implementations repair CIDD instructions in different ways, and with various resource and 

bandwidth overheads. 

Three source mapping repair mechanisms are studied. Proxy uses proxy move 

instructions to insulate the CI instructions from source name changes, needing only to re-

rename the proxy move instructions after a branch misprediction. Seq CI re-renames all CI 

instructions. Seq CIDD re-renames only the pre-identified CIDD instructions. Seq CIDD 

requires TCI’s mechanisms and is described in detail in  Chapter 6 as part of a complete 

implementation. 

For re-execution of CIDD instructions, two methods are investigated. The first is 

conservative and holds all instructions in the issue queue to achieve selective re-execution. 

This model is labeled Hold IQ. This selective re-execution approach is used by some prior 

control independence architectures designed on superscalar substrates (Rotenberg, et al., 

1999) (Cher, et al., 2001) (Gandhi, et al., 2004). The second selective re-execution substrate 

is more aggressive and allows instructions to drain out of the issue queue fully or partially. 
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This model is labeled Drain IQ. Under this model, selective re-execution is accomplished in 

different ways based on the source mapping repair mechanism. For Proxy, the issue queue is 

partially drained, leaving the proxy move instructions and the CIDD instructions in the issue 

queue for re-execution. This is signified by Drain IQ (partial). For Seq CI, all instructions 

(including data they produce) are drained and buffered in a re-execution buffer (RXB). 

Selective re-execution is achieved by sequencing the RXB and re-dispatching the CIDD 

instructions. Similarly, Seq CIDD also uses the RXB for selective re-execution. However, for 

Seq CIDD, only the pre-identified CIDD instructions are buffered in the RXB. The RXB-

based models are signified by Drain IQ (all). 

Table 4. Resource and bandwidth usage for repairing CIDD instructions. 

 

Model 

Hold  resources  until branch 
resolves CI  resequencing bandwidth 

Related work  

 Registers 
Issue 

Queue RXB Re-renaming Re-execution 

 Base none none none CIDD + CIDI CIDD + CIDI 
 

H
ol

d 
IQ

 

Proxy all all none proxy CIDD + proxy 
(Cher, et al., 2001)ª, 
(Gandhi, et al., 2004) 

Seq CI all all none CIDD + CIDI CIDD 
(Rotenberg, et al., 1999), 
(Rotenberg, et al., 1999) 

Seq CIDD all all none CIDD CIDD 
 

D
ra

in
 IQ

 Proxy 
some CIDI + 
CIDD + proxy 

CIDD + 
proxy 

none proxy CIDD + proxy 
 

Seq CI none none all CIDD + CIDI CIDD 
(Akkary, et al., 1998), 
(Chou, et al., 1999) 

Seq CIDD none none CIDD CIDD CIDD TCI 

ªCited for the use of proxy instructions, and not skipper style control independence. 
 

Table 4 compares the resource and bandwidth overheads for repairing the CIDD 

instructions, for Base (conventional recovery), Proxy, Seq CI, and Seq CIDD, on both Hold 

IQ and Drain IQ re-execution substrates. The Base model always drains instructions out of 
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the issue queue (since conventional recovery squashes all instructions after a branch 

misprediction). In addition, the last column in Table 4 cites previous implementations from 

the literature that share the same CIDD repair mechanism (but not necessarily the base 

substrate or the CD repair mechanisms). Resources are divided into physical register usage 

(Registers), issue queue entries held (Issue Queue), and instructions occupying the RXB 

(RXB). Bandwidth is divided into re-renaming and re-execution bandwidth. Drain IQ/Seq 

CIDD is qualitatively the best or tied for best in every category and is the basis for the TCI 

implementation discussed in  Chapter 6. Drain IQ/Seq CIDD may re-rename fewer or more 

instructions than Proxy, depending on the number of proxy instructions and CIDD 

instructions being re-renamed. Moreover, Drain IQ/Seq CIDD does not incur 

resource/bandwidth overheads on correctly predicted branches like Proxy. 

5.2.4 Results (resource and bandwidth overheads) 

Figure 24 (a) shows the harmonic mean of IPCs for 15 of the SPEC integer benchmarks 

listed in Section  2.2, for the seven models. Figure 24 (b) excludes benchmark mcf from the 

harmonic mean because the extremely low IPC of mcf obscures trends. The issue queue size 

is varied to understand resource pressure. The resource inefficiency of the Hold IQ re-

execution substrate is a major bottleneck with small issue queues. In fact, Base outperforms 

all Hold IQ models, for issue queues with fewer than 256 entries (128 entries excluding mcf). 

This is because the issue queue limits the overall window size when all instructions are held 

in the issue queue. 

Ideally, all instructions should free all cycle-critical resources speculatively, allowing for 

a bigger window, and CIDD instructions should only be re-allocated resources when 
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selective re-execution is required after a branch misprediction. Drain IQ strives for this goal. 

However, Proxy falls short of this ideal scenario because proxy and CIDD instructions 

remain in the issue queue for possible selective re-execution. The remaining issue queue 

pressure is evident in Figure 24: Proxy is unique in its sensitivity to issue queue size 

compared to other models with Drain IQ. In fact, for a 16-entry issue queue, Proxy has no 

performance advantage over conventional recovery (Base) let alone the other selective 

recovery approaches. On the other hand, a 64-entry issue queue enables Proxy to overtake 

Seq CI. Overall, Seq CIDD (TCI) performs the best due to its combined bandwidth and 

resource efficiency. 

Figure 24 (c) shows the harmonic mean of IPCs for benchmarks with high branch 

misprediction rates, for all the models. This includes bzip, compress, go, gzip, twolf, and vpr, 

all of which have more than 9 branch mispredictions per 1000 instructions. In these 

benchmarks, the branch misprediction penalty is severe, so there is opportunity for large 

improvements with the help of control independence. Therefore, we notice that the 

improvements over Base, for all Drain IQ models, have further increased, but the trends 

remain the same. 
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(a) 

 
(b) 

(c) 

Figure 24. Performance of different CIDD repair models (harmonic mean). 

Figure 25, Figure 26, and Figure 27 show the IPC results of the individual benchmarks 

for the seven models. Looking at individual benchmark IPCs for the Drain IQ re-execution 

substrate, some interesting phenomena can be observed. 

1) Drain IQ/Seq CI can sometimes degrade performance with respect to Base. For 

example, gap, vortex, and vpr show Drain IQ/Seq CI performs worse than Base, most 

of the time. This is due to the window size limitation caused by buffering all 
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instructions in the RXB (RXB size is 256 instructions). Drain IQ/Seq CIDD does not 

have this limitation since it uses the RXB resource wisely, only storing CIDD 

instructions, making the RXB less of a bottleneck (or not at all). 

2) Drain IQ (partial)/Proxy can sometimes degrade performance with respect to Base for 

small issue queues. This can be observed in bzip, crafty, li, and vpr for a 16-entry issue 

queue. 

3) Although Drain IQ/Seq CIDD outperforms Drain IQ (partial)/Proxy most of the time, 

we notice that, for the benchmark vpr, Drain IQ (partial)/Proxy slightly outperforms 

Drain IQ/Seq CIDD with an issue queue size of 256. One possible reason is that proxy 

move instructions are no longer a resource concern with a 256-entry issue queue, and 

during re-renaming, there are fewer proxy move instructions to be re-renamed than the 

number of CIDD instructions needing re-renaming. 
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(a) 

 
(b) 

(c) 
 

(d) 

Figure 25. Performance of different CIDD repair models (individual benchmarks). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 26. Performance of different CIDD repair models (individual benchmarks). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 27. Performance of different CIDD repair models (individual benchmarks). 
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Figure 28(a-c) shows the performance sensitivity of Drain IQ/Seq CI and Drain IQ/Seq 

CIDD to the RXB size. In addition, the Base model is included for reference (Base is not 

affected by the change in RXB size). Figure 28(a) shows the harmonic mean IPC of all 

benchmarks, Figure 28(b) excludes mcf from the harmonic mean (to be consistent with 

previous graphs), and finally Figure 28(c) shows the harmonic mean IPC of benchmarks with 

high branch misprediction rates (more than 9 branch mispredictions per 1000 instructions). 

Seq CI is very sensitive to RXB size since all instructions are inserted into the RXB, 

therefore, the RXB limits the overall window size (like a ROB). In contrast, Seq CIDD is 

much less sensitive to the RXB size since only CIDD instructions are inserted into the RXB, 

therefore, the RXB does not limit the overall window size. This trend is observable in all the 

figures. In fact, Seq CIDD only needs an RXB of 64 entries to achieve most of the 

performance potential (on average). 
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(a) (b) 

 
(c) 

Figure 28. Sensitivity to RXB size. 
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Second, we notice that Seq CI degrades performance with respect to Base even for 
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allowing highly predictable branches’ CIDD instructions to circumvent the RXB. 
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(a) 
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(d) 

Figure 29. Sensitivity to RXB size (individual benchmarks). 
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Figure 30. Sensitivity to RXB size (individual benchmarks). 
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Figure 31. Sensitivity to RXB size (individual benchmarks). 
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Chapter 6  

Transparent Control Independence (TCI) 

In  Chapter 5, we contrasted and quantified the resource and bandwidth overheads of 

Proxy, Seq CI, and Seq CIDD. We found that Seq CIDD combines the advantages of Proxy 

(bandwidth-efficient) and Seq CI (resource-efficient) and eliminates their disadvantages, 

while fulfilling the CI region re-renaming requirement. In this chapter, we present a new 

microarchitecture that implements the Seq CIDD model. By proactively identifying CIDD 

instructions in preparation for a branch misprediction, we only re-rename CIDD instructions 

and only reallocate resources to CIDD instructions when recovery is needed. 

6.1 High-level overview of TCI microarchitecture 

Figure 32 shows our transparent control independence (TCI) architecture. The shaded 

region highlights a resource-streamlined pipeline that aggressively releases resources based 

on conventional speculation. Correct and incorrect instructions alike flow through the 

pipeline as fast as they would with conventional speculation, aggressively freeing issue 

queue entries and physical registers (Akkary, et al., 2003) (Cristal, et al., 2004) (Moudgill, et 

al., 1993) (Srinivasan, et al., 2004) on the assumption that branch predictions are correct. 

Instructions drain from the pipeline as soon as they complete – there is no reorder buffer 

(ROB) and precise exceptions are achieved via checkpoints (Akkary, et al., 2003) (Cristal, et 

al., 2004) (Moudgill, et al., 1993) (Srinivasan, et al., 2004) (Hwu, et al., 1987). 
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Figure 32.  Transparent control independence (TCI) architecture. 
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the repair rename map, which is initialized from a corresponding branch checkpoint thus 

ensuring the correct CD instructions have values in the physical register file to begin 

execution with. When the reconvergent point is encountered again, control is transferred to 

the branch’s CIDD instructions in the RXB, corresponding to Step-4 in the figure. These are 
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also renamed using the repair rename map to establish linkages with producer instructions 

prior to the reconvergent point. A key point is that the branch’s CIDD instructions residing in 

the RXB do not tie up cycle-critical resources (issue queue entries and physical registers) and 

are allocated resources only when control is transferred to the RXB, just like instructions that 

are dispatched from the I-cache. Another key point is that CIDDs’ source operands that 

depend on CIDI instructions cannot be resolved by the repair rename map because the CIDIs’ 

values were most likely freed from the physical register file already, and those that have not 

been freed are inaccessible by the repair rename map anyway; fortunately, the source values 

were individually checkpointed previously and are in the RXB with the CIDD instructions. 

Loads issue aggressively and are speculative with or without branch mispredictions 

(Chrysos, et al., 1998). Store-load dependences are also resolved correctly, as we explain in 

Section  6.7 and Section  6.8. 

6.2 Identifying and inserting CIDD instructions into RX B 

This section explains how CIDD instructions are identified and inserted into the RXB by 

the speculative rename map, in a process called poisoning. 

6.2.1 Reconvergent point and Influenced Register Set (IRS) predictor 

The compiler or a hardware predictor can be used to identify branches’ reconvergent 

points. We use the dynamic reconvergence predictor proposed by Collins et al. (Collins, et 

al., 2004). We augment the predictor to provide additional information for each branch. First, 

the predictor keeps track of the maximum path length through a branch’s control-dependent 

(CD) region, among paths that were traversed. This information is useful for guiding when to 

apply control independence. We select a maximum CD path length above which it is not 
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worthwhile to exploit control independence due to the sheer number of incorrect CD 

instructions. Second, we add a learning mechanism to collect a branch’s influenced register 

set (IRS). As the predictor monitors retired instructions for reconvergence, it keeps track of 

logical registers written to after the branch and before reconvergence is detected. The use of 

confidence ensures repetition, so that enough different paths are traversed through a branch’s 

CD region to yield a representative IRS. 

6.2.2 Control-Flow Stack (CFS) 

When a branch is dispatched, we must detect its reconvergent point among later 

instructions as they are dispatched. The reconvergent point marks the beginning of CI 

instructions, so it is at this point that we need to mark, or “poison”, influenced registers 

(indicated by the branch’s IRS) in the speculative rename map. 

A novel hardware mechanism called the control-flow stack (CFS) detects reconvergent 

points in the dispatch stage. When a checkpointed branch is dispatched, its reconvergent PC 

and checkpoint tag (to identify the branch) are pushed onto the CFS top-of-stack. 

The next reconvergent point in the dynamic instruction stream is detected by comparing 

the PCs of newly dispatched instructions to the reconvergent PC at the top-of-stack. If there 

is a match, then the branch corresponding to the current top-of-stack has reconverged. We 

know which branch this is via the checkpoint tag at the current top-of-stack. Since the 

beginning of control-independent instructions has been reached, the branch’s IRS is used to 

poison influenced registers at this time. Poisoning registers is explained in the next section. 

Finally, the CFS top-of-stack is popped (removed), re-exposing the next reconvergent point 

to search for. 
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The CFS can detect cases in which multiple branches have the same dynamic 

reconvergent point. If the reconvergent PC of a newly dispatched branch matches the 

reconvergent PC at the CFS top-of-stack, then the new branch and the branch corresponding 

to the CFS top-of-stack have the same dynamic reconvergent point. They do not have the 

same dynamic reconvergent point if the call depths of the two branches are different, e.g., 

due to recursion. We make the test definitive by tracking call depth in the dispatch stage and 

including call depths in CFS entries. If the new branch’s reconvergent PC and call depth 

match the CFS top-of-stack, then the branches have the same dynamic reconvergent point. In 

this case, the new branch does not push a new entry onto the CFS, implicitly “merging” with 

the CFS top-of-stack. 

There are three cases in which a branch is forced to inherit the reconvergent point of its 

encompassing branch region: if the branch does not have a predicted reconvergent PC, if 

there are no free checkpoints, or if the branch is confidently predicted. The branch 

corresponding to the CFS top-of-stack is the closest encompassing branch. Thus, the new 

branch inherits the reconvergent point of its encompassing branch simply by not pushing 

onto the CFS and instead merging as explained above. 

The CFS only needs as many entries as there are checkpoints (16 entries our default 

configuration). CFS entries of branches that resolve before they reconverge are collapsed 

away (since they are not popped). 
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6.2.3 Poison vectors 

After a branch’s CD region is fetched and its reconvergent point is detected by the CFS, 

we are ready to use the branch’s IRS to poison registers and thereby identify CIDD 

instructions. Each influenced register specified in the IRS must be poisoned. 

We provide a 16-bit poison vector per entry in the speculative rename map. A logical 

register is poisoned if one or more bits are set in its poison vector. Moreover, which bits are 

set indicates which branches a logical register is influenced by. A checkpointed branch is 

identified by its checkpoint tag. A non-checkpointed branch is identified by the checkpoint 

tag of the branch from which it inherited its reconvergent point (discussed in Section  6.2.2). 

Since we use 16 checkpoints in the default configuration, a poison vector has 16 bits in the 

default configuration. 

When a branch reconverges, the poison vector of each influenced register, specified by 

the IRS, is updated in the speculative rename map. In particular, the poison bit corresponding 

to the branch’s checkpoint tag is set. 

CIDD instructions can now be identified during renaming. When an instruction’s logical 

source registers are renamed, the corresponding poison vectors are ORed together. If the 

ORed vector has any bits set, the instruction is CIDD with respect to one or more branches. 

Also, the ORed vector overwrites the poison vector of the logical destination register, in the 

speculative rename map. This propagates poison status for identifying indirect CIDD 

instructions. 
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When a checkpoint is freed, the corresponding poison bit is cleared in all poison vectors. 

Given that all branches associated with the checkpoint are now resolved, no future 

instructions should be considered CIDD with respect to these branches. 

Only the speculative rename map, repair rename map, and checkpoints have poison 

vectors. Poison vectors in the repair rename map and checkpoints are discussed in Section 

 6.3. 

6.2.4 Inserting CIDD instructions into the RXB 

CIDD instructions are inserted into the RXB in program order at the dispatch stage. 

When a CIDD instruction issues and reads its source values from the physical register file, it 

replaces its source mappings in its entry in the RXB with the source values (a bit is set within 

its entry in the RXB to signify that source values have replaced source mappings). 

6.3 Misprediction recovery 

When a misprediction is detected, the fetch unit temporarily redirects fetching to the 

correct target of the mispredicted branch. Correct CD instructions are fetched from the 

instruction cache and renamed using the repair rename map initialized from a checkpoint at 

the branch. The repair rename map, like the speculative rename map, has its own CFS to 

detect the reconvergent point again thus detecting the end of the correct CD instructions (its 

CFS also identifies new nested branch regions). At this point, the branch’s CIDD instructions 

are fetched from the RXB, re-renamed using the repair rename map, and re-injected into the 

pipeline. Finally, the repair rename map is used to fix up the speculative rename map and 

checkpoints. 
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6.3.1 Reconstructing the RXB 

The RXB contains CIDD instructions with respect to all unresolved branches. This 

means the RXB must be reconstructed when recovering from a branch misprediction, as 

follows. 

� Case A. There may be instructions from the branch’s incorrect CD path in the RXB, 

that were thought to be CIDD with respect to other prior branches. These have to be 

removed from the middle of the RXB. 

� Case B. New instructions from the correct CD path may be CIDD with respect to 

other prior branches. These have to be inserted into the middle of the RXB. 

� Case C. Instructions in the RXB that are only CIDD with respect to the branch being 

serviced should be selectively removed from the RXB, since they will not be 

revisited again. Instructions in the RXB that are CIDD with respect to other branches 

(whether or not they are also CIDD with respect to the current branch) must remain 

in the RXB. Note that these two types of instructions are co-mingled in the RXB. 

There is only one solution and it is simple, because it is analogous to initial CIDD 

identification and insertion into the RXB described in the previous section. The recovery 

program for the current branch is comprised of the correct CD instructions from the 

instruction cache and all instructions in the RXB logically after the resolved branch’s 

reconvergent point. (The recovery program is not as efficient as it could be because it has 

CIDD instructions of other branches that are not also CIDD with respect to the current 

branch.) Poisoning of the recovery program via the repair rename map can once again 

construct the RXB contents. As a preliminary step, the RXB tail pointer is moved back to the 
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branch (even though the branch may not be in the RXB physically, the branch knows its 

logical position in the RXB). This naturally takes care of any incorrect CD instructions in the 

RXB since they will get overwritten by the adjusted tail pointer (case A). Then, poisoning the 

recovery program using the repair rename map will naturally (1) insert new CIDD 

instructions with respect to prior branches from among the correct CD instructions (case B), 

and (2) insert old CIDD instructions only if they are CIDD with respect to remaining 

unresolved branches (case C). 

Since CIDD instructions are concurrently fetched from the RXB (while fetching the 

recovery program) and inserted into the RXB (while constructing a new recovery program), 

we need a mechanism to prevent overwriting CIDD instructions in the RXB before they are 

fetched. We set up a pre-read pointer into the RXB, that points to the first CI instruction with 

respect to the resolved branch. Since we moved the tail pointer to the branch, the pre-read 

pointer is logically after the tail pointer. The pre-read pointer is where fetching of CIDD 

instructions is supposed to begin. If we wait until the correct CD path is fetched, some of the 

CIDD instructions beginning at the pre-read pointer could get clobbered by the advancing tail 

pointer. Therefore, using the pre-read pointer, we begin pre-reading CIDD instructions from 

the RXB right away so that they cannot get clobbered. They are transferred to a Temp Buffer, 

from which fetching of CIDD instructions will eventually begin (after the correct CD 

instructions are fetched from the instruction cache). 

Figure 33 shows a detailed RXB reconstruction example with two branches, B1 and B2, 

and respective reconvergent points R1 and R2. Logical positions of B1/R1 and B2/R2 with 

respect to RXB instructions are indicated with wide black arrows. RXB instructions are 
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labeled with their position # in the dynamic instruction stream. Noncontiguous numbers 

merely highlight that CIDD instructions are noncontiguous. Instruction x is not numbered 

because it is an incorrect CD instruction of mispredicted branch B2. Furthermore, 

instructions are marked with either a rectangle or oval: rectangles are CIDD with respect to 

B1, ovals are CIDD with respect to B2, rectangle+oval are CIDD with respect to both B1 and 

B2. Below we step through each of the frames (a)-(g). 

(a) Frame (a) shows the initial state of the RXB. B1 has no CD instructions in the RXB 

since there are no branches prior to it. B1 has four CIDD instructions after R1: 9, x, 

16, 20. B2 has one (incorrect) CD instruction, x. Instruction x is not in the RXB 

because of B2 but rather because it is CIDD with respect to B1. B2 has two CIDD 

instructions after R2: 18, 20. 

(b) In frame (b), mispredicted branch B2 is detected, causing the RXB tail to rollback to 

just after B2 (instruction x), and the RXB pre-read pointer to initiate at the first CIDD 

instruction past B2’s reconvergent point R2 (instruction 16). 

(c) In frame (c), new instructions 11 and 12 – correct CD instructions with respect to B2 

– are fetched from the instruction cache (I$) and dispatched for the first time to the 

issue queue (To IQ). Moreover, instruction 12 is inserted into the RXB because it is 

CIDD with respect to B1. Instruction 12 is inserted at the RXB tail (which then 

advances) thereby replacing instruction x. Note also that pre-reading has begun: 

instruction 16 is transferred to the Temp Buffer so that it is not clobbered by B2’s 

incoming correct CD instructions. 
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(d) Similarly, in frame (d), we continue fetching and dispatching the remainder of B2’s 

correct CD instructions (13 and 14). Both 13 and 14 are dispatched to the issue queue 

but only 14 is inserted into the RXB, since 14 is CIDD with respect to B1. Meanwhile 

we continue pre-reading instructions (18) into the Temp Buffer. 

(e) In frame (e), no more instructions are fetched from the I$ because B2’s reconvergent 

point R2 has been reached from the correct CD path. We begin reinjecting and/or 

recirculating CIDD instructions from the Temp Buffer. Frame (e) shows instruction 

16 leaving the Temp Buffer only to be recirculated back to the RXB (CIDD on 

unresolved B1). It is not reinjected into the issue queue because it is not CIDD on B2 

(the mispredicted branch). 

(f) However, instruction 18 in frame (f) is reinjected into the issue queue (CIDD on 

resolved B2) and not recirculated back to the RXB since it is not CIDD on B1. 

(g) Finally, in frame (g), instruction 20 is both reinjected into the issue queue and 

recirculated to the RXB from the Temp Buffer, because it is CIDD on both B1 and 

B2. Since the Temp Buffer is empty, we are done servicing B2. 
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Figure 33. RXB reconstruction example. 
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6.3.2 Poisoning via repair rename map 

The repair rename map’s poison vectors are initialized from the mispredicted branch’s 

checkpoint. While fetching the correct CD instructions from the instruction cache and CIDD 

instructions from the RXB, the poison vectors are managed the same way as described for the 

speculative rename map (Section  6.2.3), except for a subtle modification. The poison vectors 

of logical registers that would have been updated by CIDI instructions, simply are not, 

because they are not observed by the repair rename map. These logical registers represent 

“holes” in the repair rename map and their poison vectors cannot be referenced by an 

instruction’s source registers. Fortunately, we know two things: (1) the poison vector 

generated by a CIDI instruction is all 0’s because it is not CIDD with respect to any 

unresolved branch, and (2) a CIDI instruction is observed once (and only once) in either the 

speculative rename map (CIDI immediately) or repair rename map (CIDI eventually). So, 

when a source register of a CIDD instruction references a CIDI production for the first and 

only time (signaled by an all-0 poison vector in the rename map), a sticky bit 

(“CIDI_supplied”) associated with the source register in the RXB is set to indicate that the 

source register’s poison vector is by definition all 0s. Once CIDI_supplied=1, in future 

passes, an all-0 poison vector is used instead of referencing an absent poison vector in the 

repair rename map. Table 5 summarizes poisoning using the repair rename map. 

The outcome of poisoning by the repair rename map indicates what to do with each 

instruction. For correct CD instructions from the instruction cache, the choices are: insert or 

do not insert into the RXB. For CIDD instructions from the RXB, the choices are: reinject 

only, insert (i.e., recirculate) only, reinject and insert, or discard. An instruction is inserted 
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into the RXB if poisoning indicates that it is CIDD with respect to any unresolved branches. 

An instruction is reinjected into the pipeline if poisoning indicates that it is CIDD with 

respect to the mispredicted branch being serviced. 

Table 5. Poisoning using the repair rename map. 

 
Source operand type 

 
CIDI CIDD 

Action 
Use an all-0 

poison vector 
Read poison vector from 

repair rename map 

 

6.3.3 Reinjecting CIDD instructions 

Only CIDD instructions from the RXB that are CIDD with respect to the branch being 

serviced are reinjected into the pipeline. These are re-renamed to bind physical registers and 

thereby facilitate re-execution. 

CIDI instructions are absent from re-renaming, just as they were absent from poisoning. 

Now, additionally, CIDD instructions from the RXB that are not reinjected are also absent 

from re-renaming. The latter instructions are CIDD with respect to other branches but not 

with respect to the branch being serviced. They are tantamount to CIDI instructions with 

respect to the branch being serviced (“implicit” CIDI instructions), and need not be re-

executed. As such, they are not re-allocated storage and do not participate in re-renaming. 

When re-renaming a source register of a reinjected CIDD instruction, we need to 

determine if it depends on an explicit or implicit CIDI instruction (the two cases outlined 

above) versus a CD or reinjected CIDD instruction. If it depends on an explicit or implicit 

CIDI instruction, then the source value (if available) or source mapping from the RXB is 
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used in lieu of re-renaming, because the repair rename map has a stale name. Otherwise, the 

correct mapping is obtained from the repair rename map. Table 6 summarizes re-renaming a 

source operand using the repair rename map. 

Table 6. Renaming using the repair rename map. 

 
Source operand type 

 
Explicitly CIDI CIDD but  

implicitly CIDI CIDD 

Action 
Read value or 

mapping from RXB 
Read value or 

mapping from RXB 
Read mapping from 
repair rename map 

 

The source register depends on an explicit CIDI instruction if its CIDI_supplied bit in 

the RXB is set. The source register depends on an implicit CIDI instruction if its poison 

vector in the repair rename map does not have the current branch’s bit set. Note, it is safe to 

reference the poison vector because all CIDD instructions in the RXB undergo poisoning. It 

is only unsafe to reference the poison vector in the case of explicit CIDI instructions, which 

is why the CIDI_supplied bit is checked first. 

The reinjected CIDD instruction is allocated a new physical destination register and 

updates the repair rename map accordingly. 

If a CIDD instruction is both inserted (i.e., recirculated) into the RXB and reinjected into 

the pipeline, its source registers may be updated in the RXB, analogous to what was 

described in Section  6.2.4. Specifically, when it redispatches, a re-renamed source register 

updates the corresponding source mapping in the RXB. When it reissues, it reads values from 
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the physical register file for source registers that did not reuse values from the RXB. These 

new values replace corresponding source mappings in the RXB.  

6.3.4 Merging repair/speculative rename maps 

When RXB reconstruction is completed, the repair rename map is logically at the same 

point in the dynamic instruction stream as the speculative rename map. Some mappings in 

the speculative rename map have to be repaired using the repair rename map. Specifically, 

any speculative mapping whose poison vector has the branch’s bit set may be incorrect (it 

may have changed due to the control-flow adjustment). We simply copy the corresponding 

mapping from the repair rename map to the speculative rename map. All poison vectors in 

the repair rename map are copied. 

Checkpoint maps are repaired the same way, as the repair rename map resequences 

through the RXB and reaches checkpoints along the way. 

6.4 Writing source values into the RXB 

When a CIDD instruction leaves the issue queue and reads its source values from the 

physical register file (or from the bypass network), it needs to access the RXB entry assigned 

to it to replace the stored source mappings with the actual source values. However, a CIDD 

instruction’s RXB entry may change its location as part of reconstructing the RXB during 

branch misprediction recovery. The RXB entry may reside in the Temp Buffer temporarily, 

only to be reinserted into a different RXB entry or to be discarded from the RXB altogether 

(no longer CIDD on any branch). In either case, the in-flight CIDD instructions still in the 

pipeline have stale RXB entry numbers (RXB tags) that need to be repaired, to prevent 

corrupting the RXB contents by way of updating the wrong RXB entries. 
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Furthermore, multiple instances of the same CIDD instruction may be in the pipeline 

concurrently, waiting for their opportunity to update the shared RXB entry. This situation 

may arise because an original dispatched instance has not issued by the time a branch 

misprediction starts servicing or because an instruction that is CIDD on multiple branches is 

injected multiple times due to servicing multiple branch mispredictions independently. In 

either case, only the last dispatched instance of a given CIDD instruction needs to update the 

RXB entry with source values, since the last instance has the most up-to-date source 

mappings that reflect the current state of the processor. 

To overcome these challenges, a solution needs to be implemented that can fulfill two 

requirements: 

1) Enable valid CIDD instructions in the pipeline to access their RXB entries even in the 

presence of RXB reconstruction (RXB-entry recirculation). 

2) Invalidate the RXB tags of some CIDD instructions in the pipeline, in reaction to 

freeing some RXB entries or reinjecting duplicate copies of the CIDD instructions 

into the pipeline. 

We propose using an indirection table (IT) in conjunction with the RXB to fulfill both of 

these requirements. The indirection table contains the actual RXB/TB mapping, a valid bit 

indicating if the mapping is valid or not, and a Temp Buffer bit indicating if the RXB entry is 

in the Temp Buffer. As CIDD instructions (either original CIDD or reinjected CIDD) 

dispatch into the pipeline, they are allocated an entry in the IT in addition to the RXB entry. 

The IT entry is initialized as being valid and contains the newly allocated RXB entry number. 

In-flight CIDD instructions carry with them only their IT entry number to access the RXB 
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entry, instead of the actual RXB entry number (since it may become stale). This level of 

indirection allows us to insulate in-flight CIDD instructions from changes in the RXB. 

Next, we show how the RXB’s IT is managed under different situations: 

� Scenario 1: dispatching a CIDD instruction for the first time: 

1) Allocate a new RXB entry and a new IT entry. 

2) Initialize the new IT entry to point to the new RXB entry. 

3) Initialize the new RXB entry’s IT index to point to the new IT entry. 

� Scenario 2: writing source values into the RXB/TB: 

1) Access IT entry. 

2) If valid bit is not set, free IT entry and discard the source values. 

3) If valid bit is set: 

a. Read out mapping and entry location bit (in RXB or in TB). 

b. Free the IT entry. 

c. Update the RXB or TB with the source values and clear the IT index 

stored in the RXB or TB entry. 

� Scenario 3: moving entry from the RXB to the TB: 

1) If the RXB entry has a valid IT index, set corresponding IT entry’s Temp Buffer 

bit and overwrite the mapping with the new location in the TB. 

2) If the RXB entry does not have a valid IT index, do nothing. 

� Scenario 4: recirculating an RXB entry (moving entry from TB back to RXB) with 

no reinjecting: 
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1) If the TB entry has a valid IT index, clear corresponding IT entry's Temp Buffer 

bit and overwrite the mapping with the new location in the RXB. 

2) If the TB entry does not have a valid IT index, do nothing. 

� Scenario 5: recirculating an RXB entry (moving entry from TB back to RXB) while 

reinjecting a new instance of a CIDD instruction: 

1) If the TB entry has a valid IT index, clear corresponding old IT entry’s valid bit 

(this prevents old CIDD instances that are still in-flight from wrongly updating 

the RXB/TB). If the TB entry does not have a valid IT index, do nothing. 

2) Allocate a new IT entry for the new CIDD instruction instance being reinjected. 

3) Initialize the new IT entry to point to the existing RXB entry, i.e., the shifted 

location in the RXB. 

4) Overwrite the existing RXB entry’s IT index to point to the new IT entry. 

The size of the RXB’s IT is equal to the maximum number of in-flight CIDD 

instructions (in the issue queue or in the backend pipeline). The maximum number of CIDD 

instructions in overall is equal to the size of the RXB. The maximum number of in-flight 

instructions is equal to the size of the issue queue plus the number of instructions in the 

backend pipeline (#backend pipeline stages * processor width). Hence, the size of the IT is 

the lesser number between the maximum number of CIDD instructions and the maximum 

number of in-flight instructions. 
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IT size = Minimum ( 

(RXB size), 

(Issue queue size + (#backend pipeline stages * processor width)) 

) 

The IT size presented above actually covers the worst-case scenario. However, in 

practice, only a small percentage of in-flight instructions tends to comprise CIDD 

instructions. Hence, the size of the IT can be much smaller. 

IT size optimized = Minimum ( 

(RXB size), 

(% CIDD * (Issue queue size + (#backend pipeline stages * processor width) ) ) 

) 

6.5 Conventional recovery 

If a branch misprediction is detected before the fetch unit has reached the branch’s 

reconvergent point, then there is no need to transfer control to the repair rename map and 

RXB, as there are no CI instructions with respect to the branch yet. This scenario is easily 

detected by checking if the mispredicted branch has not yet popped the CFS (not 

reconverged). In this case, the speculative rename map is simply restored to the checkpoint 

corresponding to the mispredicted branch as in conventional recovery. 

6.6 Servicing multiple branch mispredictions 

TCI supports servicing new mispredictions concurrently with the one being serviced, if 

the new mispredictions are logically after the repair rename map. A new misprediction will 

begin servicing when the repair rename map logically reaches it, in a natural continuation of 
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RXB reconstruction. After fetching the correct CD instructions of the new misprediction, 

CIDD instructions of both the initial and new mispredictions are reinjected concurrently. If a 

new misprediction is logically before the repair rename map, we wait until the initial RXB 

reconstruction completes before servicing the new misprediction; however, an earlier 

misprediction that has not reconverged is serviced immediately via conventional recovery. 

6.7 Store and load queues 

Stores and loads issue out-of-order in the pipeline. The memory dependence predictor 

(e.g. store sets (Chrysos, et al., 1998)) is a speculative optimization to enable some loads to 

issue speculatively yet confidently. Ultimately, memory dependencies between loads and 

stores are enforced by the load/store queue (LSQ). A traditional LSQ needs to maintain order 

between all stores and loads for correct store-load forwarding and load violation detection. 

Hence, the order of the LSQ must be repaired when exploiting control independence to 

recover from a branch misprediction, since loads and stores may be removed and inserted in 

the middle of the window. 

The LSQ can be repaired by leveraging the same reconstruction technique used to adjust 

the RXB after a branch misprediction. The modified LSQ would need its own TB to assist in 

shifting the loads and stores into their new locations. In addition, the modified LSQ would 

need its own indirection table (IT). The IT is necessary to insulate loads and stores in the 

pipeline from the LSQ repair process. Repairing the order of the LSQ in this way may 

degrade the performance of the system. The LSQ holds many more instructions than the 

compressed RXB, which could extend the branch misprediction recovery process. To 

overcome this problem, we need to reduce the time needed to repair the LSQ. 
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Fortunately, many processors implement the ordered LSQ as two separate ordered 

queues: a store queue (SQ) and a load queue (LQ). Order between the two queues is 

maintained using pointers. Each LQ entry knows which entry in the SQ it is logically after. 

Each SQ entry knows which entry in the LQ it is logically after. This separation allows 

repairing the LSQ twice as fast, since both the SQ and the LQ are repaired in parallel. 

However, this implementation also requires us to split both the TB and IT into two structures, 

one for the SQ and another for the LQ. The SQ indirection table (SQ-IT) insulates the LQ 

entries’ pointers from changes during SQ reconstruction. Therefore, pointers in the LQ 

entries point to the SQ-IT instead of the SQ entries directly. This function is also carried out 

by the LQ indirection table (LQ-IT) to insulate the SQ entries’ pointers from changes during 

LQ reconstruction. 

The main reason for separating the SQ from the LQ is due to the different functions they 

perform. The SQ has two main functions: forwarding memory values to loads and 

committing stores to the cache in program order. On the other hand, the main function of the 

LQ is to detect memory dependence violations due to the possibility of a load receiving a 

wrong value. This separation leads to higher efficiency since we avoid accessing a large 

unified LSQ when accessing one of the smaller queues is sufficient. Note, the SQ needs to be 

fast (the store-load forwarding function) as it affects the performance of the processor; 

however, the LQ is only needed to guarantee correctness which is not as time sensitive. 

We observe that to fulfill all the requirements of the LSQ, order only needs to be 

maintained between store instructions and between store and load instructions. Order 

between load instructions is not required. Relaxing the order between load instructions 
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enables us to design a more efficient LSQ that is compatible with control independence. We 

propose using a partially ordered LSQ (POLSQ), which is the combination of an ordered SQ 

and an unordered LQ to achieve this objective. Figure 34 shows an example of how loads 

and stores would be organized in an ordered unified LSQ, a split ordered SQ and ordered LQ, 

and our new POLSQ. Notice that loads are only ordered with respect to stores in the POLSQ. 

 

Figure 34. Example showing the relationship between stores and loads in the LSQ: 

(a) Ordered unified LSQ. (b) Ordered split SQ/LQ. (c) Partially ordered LSQ. 

In the POLSQ, the SQ will preserve the correct program order required for both store-

load data forwarding and committing stores to the cache in order. Hence, the SQ needs to be 

reconstructed during branch misprediction recovery. This is achieved via the store queue 

temporary buffer (SQ-TB) for recirculating the SQ entries and the store queue indirection 

table (SQ-IT) to insulate in-flight stores in the pipeline and pointers in the unordered LQ 
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from SQ changes. Entries in the unordered LQ will only preserve order with respect to stores 

using the store pointers (SQ-IT index) in each LQ entry. The LQ no longer needs to be 

reconstructed after a branch misprediction since it is unordered. Therefore, it no longer needs 

the load queue temporary buffer (LQ-TB) or the load queue indirection table (LQ-IT). 

Figure 35 shows the POLSQ structures in more detail. In addition, the content of the 

structures reflects the example in Figure 34. Elements with gray borders are additions to a 

conventional ordered split SQ/LQ design. Similar to the ordered split SQ/LQ design, both the 

unordered LQ and ordered SQ have an address CAM port for matching on addresses. Note, 

the address CAM port of the unordered LQ does not provide ordering information. Order is 

determined indirectly leveraging the SQ order. In the POLSQ, the unordered LQ also has an 

additional CAM port for matching on the SQ-IT index. This CAM port is used to free entries 

in the LQ either due to committing these instructions or due to squashing instructions as part 

of branch misprediction recovery. Notice, the SQ also contains the branch and reconvergent 

point instructions. These additional instructions are needed to be able to reconstruct the SQ 

correctly after a branch misprediction. 

In the POLSQ, store-load forwarding is very similar to the conventional ordered split 

ordered SQ/LQ design. In both designs, the load instruction accesses the ordered SQ and 

performs a search on all stores logically before the load for a matching address. If one or 

more stores match the load’s address, then the value of the youngest store (closest to the 

load) is forwarded to the load. However, if no store address matches then the value is loaded 

from the data cache. POLSQ requires an additional step before performing store-load 

forwarding. The SQ-IT is accessed using the load’s SQ-IT index to find the store entry (SQ 
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index) to search before. This extra step is a consequence of using the SQ-IT to insulate loads 

from the possible shifting of SQ entries. 

 

Figure 35. Structures of the POLSQ (excluding SQ-TB), with contents corresponding to 

the running example. 

Figure 36 gives an example of store-load forwarding using POLSQ. When a load 

instruction (E in this example) computes its address, the store-load forwarding process is 

initiated. The first step involves accessing the SQ-IT with instruction E’s buffered index (SQ-

IT index = 6). This produces the current SQ index that the load is logically after in the SQ 

(SQ index = 2). The second step uses the computed address of the load (0x8) to find stores 

with a matching address in the SQ, and uses the SQ index from step 1 to find the closest prior 

matching store instruction. In this example, we notice that two store instructions match on the 

address of the load (store B and store I), but only one of the stores is actually before the 
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load’s SQ index (store B). Hence, the load will be forwarded the value of the store instruction 

B. 

 
Figure 36. Store-load forwarding using the POLSQ. 
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dependence violations may occur leading to incorrect program execution. Detecting and 
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occurred. However, since the LQ is unordered, additional steps are needed to verify a load 

violation has occurred. This is accomplished by comparing the order of the potentially 

offending loads to the order of the store. First, the potentially offending loads will access the 

SQ-IT, to determine their current logical positions in the SQ. The SQ indices are then used to 

confirm or dismiss the potential violations. Loads located before the store are false 

violations. However, loads located after the store are true violations needing recovery. 

Store 
addr

K: 0xa

J: Rec

D: 0x0

A: 0x4

Load 
addr

E: 0x8

H: 0x0

F: 0x4

C: 0x0

SQLQ
SQ

index

1

6

SQ-IT
SQ-IT 
index

6

4

6

2

==

SQ-IT 
index

0

6

7

6

5

2

0

In
de

x

=

I: 0x8

G: BrL: 0xa

3

0 4

4

3

7

5

2

1

0

In
de

x

4

3

7

6

5

2

1

0

In
de

x

4

3

Trigger

26

B: 0x8 21

Step 
1

Step 
2

Step
2'

0x8



 

 
133 

Figure 37 gives an example of detecting a memory dependence violation using the 

POLSQ. Assume that all loads in the LQ have executed speculatively. When store A 

computes its address, this triggers the need to check for possible memory dependence 

violations. The first step is to search the LQ for any load addresses that match the store’s 

address (0x4). The search shows that load instruction F is a match and, hence, a potential 

violation. Next, we try to confirm the exception. The second step is to access the SQ-IT to 

determine the load’s current location in the SQ (SQ index = 2). Finally, in the third step, we 

compare the load’s SQ index with the store’s SQ index. We find that the load instruction F is 

after the store instruction A. Therefore, the violation of load instruction F is confirmed and 

we need to recover to ensure correct execution. 

  
Figure 37. Detecting a memory dependence violation using the POLSQ. 

POLSQ entries are freed at retirement or during branch misprediction recovery. The 

ordered SQ frees its entries in program order at retirement or from the middle of the SQ as 

part of the SQ reconstruction. On the other hand, the LQ is unordered and relies on the SQ to 
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free its entries. When a SQ entry is freed (either at retirement or during branch misprediction 

recovery), the SQ entry’s SQ-IT index is broadcasted to the LQ, freeing matching LQ entries. 

Note, when the SQ is empty (i.e., the window does not contain any branches, reconvergent 

points, or stores), dispatched loads are not inserted into the LQ. These loads are guaranteed 

not to cause load violations and require no store-load forwarding. 

6.8 Branch-sets and CIDD loads 

Loads issue speculatively and memory dependence violations are detected via the 

POLSQ. A memory dependence predictor (store-set predictor (Chrysos, et al., 1998)) is used 

to stall some loads when a predicted conflicting store is in the window. This reduces memory 

dependence violations. 

A conventional store-set predictor works for stores currently in the window. 

Unfortunately, servicing a branch misprediction may change the stores in the window 

(remove incorrect CD stores, insert correct CD stores, or re-execute some CIDD stores) 

observed previously by the store-set predictor, possibly introducing memory dependence 

violations.  

To reduce memory dependence violations caused by changed stores in the window, we 

introduce a new “branch-set” predictor. When the POLSQ detects a load violation, we 

determine the mispredicted branch that influenced the conflicting store (the store is CD or 

CIDD with respect to the branch). This is used to maintain branch-load dependence 

information (branch-sets), i.e., the load is considered CIDD with respect to the branch via 

memory dependencies. Hence, branches become proxies for potentially conflicting stores that 

they influence, whether the stores are currently in the window or not.  
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When a load is dispatched, the branch-set predictor will predict if there are or will be any 

potentially conflicting stores in the window – whether current CD stores, potential late CD 

stores, or current CIDD stores that may re-execute – and marks the load as being a CIDD 

load. Predicted CIDD loads and their dependents are then copied into the RXB like normal 

CIDD instructions. When a mispredicted branch is serviced, its CIDD loads will be re-

injected into the pipeline, allowing them the opportunity to re-access the store-set predictor 

as part of memory disambiguation. 

6.9 Load violation recovery 

The processor must detect and recover from load violations. Load violations are detected 

by the POLSQ and indicate failures by the branch-set and store-set predictors.  

Although CIDD loads are present in the RXB for an orthogonal reason (to allow them 

the opportunity to re-access the store-set predictor after a branch misprediction, as described 

in Section  6.8), violating CIDD loads are in the RXB and can take advantage of the RXB’s 

selective recovery capabilities to efficiently recover from their violations. To do so, the 

violating CIDD loads are simply re-injected into the pipeline along with their dependent 

instructions. Notice that the RXB is a general selective re-execution mechanism that can 

cover any loads if we choose to insert arbitrary loads and their dependents into the RXB. 

On the other hand, violating CIDI loads cannot selectively recover, since they are not 

present in the RXB. Recovering from CIDI load violations is delayed until retirement (to 

avoid servicing a speculative load violation), at which point the entire pipeline is flushed, the 

same as an exception. 
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6.10 Reconvergence predictor misinformation 

The reconvergence predictor may provide a flawed reconvergent PC, incomplete IRS, or 

misleading CD path length for a branch. Inaccuracies are detected when fetching CD 

instructions of the branch. If inaccurate information is detected during the first pass through 

the CD region, it can be amended. If detected during the second pass (repairing mispredicted 

branch), it is handled by forgoing control independence. We call the latter “downgrades” 

(downgrade to conventional recovery). The frequency of downgrades is reported in results. 

An incomplete IRS is detected by observing logical destination registers that are not 

specified in the IRS. If in the first pass, the IRS can be updated so that it is more accurate 

when poisoning begins at the reconvergent point. However, if in the second pass, we know 

that the branch’s CIDD instructions in the RXB are not sufficient: some needed CIDD 

instructions were not poisoned earlier due to the incomplete IRS. 

Flaws in a branch’s predicted reconvergent PC or maximum CD path length are 

detectable when the branch does not reconverge within the maximum number of allowable 

CD instructions. If in the first pass, it is handled by popping the CFS top-of-stack, implicitly 

merging the branch with its encompassing branch which may have better luck reconverging. 

If in the second pass, the branch downgrades to conventional recovery. 
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Table 7. Benchmark statistics and Base/Perfect results. 

Benchmarks 
L2 load miss/1k 

instructions 
Branch misp. 

/1k instructions 
Base IPC Perfect %IPC improvement 

4-issue 8-issue 4-issue 8-issue 

Base TCI Base TCI IQ32 IQ64 IQ32 IQ64 IQ32 IQ64 IQ32 IQ64 

bzip2-program-ref 2.73 2.74 12.74 12.17 1.57 1.60 1.83 1.91 115% 124% 168% 208% 
compress95-bigtest-ref 0.31 0.31 10.01 9.92 1.60 1.62 1.80 1.89 98% 120% 119% 171% 
crafty-ref 0.06 0.06 5.67 6.17 2.41 2.43 3.11 3.33 55% 61% 81% 108% 
gap-ref 0.99 1.04 2.18 2.27 2.86 2.95 3.62 3.96 20% 24% 26% 33% 
gcc-expr-ref 0.11 0.12 4.99 5.60 2.36 2.38 3.02 3.13 46% 50% 66% 81% 
go95-5stone21-ref 0.02 0.02 20.65 21.21 1.21 1.21 1.32 1.33 186% 205% 254% 342% 
gzip-graphic-ref 0.73 0.73 10.42 10.56 1.63 1.64 1.89 1.94 102% 113% 128% 178% 
ijpeg95-specmun-ref 0.63 0.63 4.67 4.83 2.51 2.54 3.37 3.59 42% 44% 66% 76% 
li95-ref 0.00 0.00 5.24 6.42 2.42 2.45 3.05 3.22 52% 59% 79% 96% 
mcf-ref 128.13 128.87 5.02 4.75 0.10 0.10 0.10 0.11 1% 2% 1% 1% 
parser-ref 0.04 0.04 7.69 7.66 1.75 1.85 1.99 2.19 53% 71% 61% 90% 
perlbmk-diffmail-ref 0.04 0.04 2.34 2.40 2.97 3.00 4.21 4.45 25% 28% 38% 46% 

twolf-ref 0.02 0.03 13.43 16.59 1.36 1.41 1.49 1.58 86% 116% 101% 149% 
vortex-two-ref 0.97 0.99 0.29 0.30 3.54 3.63 5.18 5.66 3% 3% 4% 5% 

vpr-route-ref 5.48 6.91 9.98 9.62 1.18 1.24 1.32 1.44 73% 95% 73% 97% 

 

 
Figure 38. Performance improvement for 4-issue pipeline. 

 
Figure 39. Performance improvement for 8-issue pipeline. 
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6.11 Results 

We present performance results for five models: Base, Proxy, Seq CI, TCI, and Perfect 

(the baseline with perfect branch prediction). Proxy, Seq CI, and TCI leverage the Drain IQ 

re-execution substrate (see Section  5.2.3). Table 7 shows the IPCs for Base for 4-issue and 8-

issue pipelines with 32-entry and 64-entry issue queues. IPC improvement of Perfect over 

Base is also shown in Table 7. 

6.11.1  Performance and analysis 

Figure 38 shows the performance improvement of the various models over Base, for 4-

issue pipelines with 32-entry and 64-entry issue queues. The 64-entry issue queue results are 

shown as error bars with respect to the 32-entry bars. TCI improves IPC by up to 61% (64%) 

over Base with a 32-entry (64-entry) issue queue. The average IPC improvement of TCI over 

Base, across all benchmarks, is 16% for both issue queue sizes. 

Figure 39 shows corresponding IPC improvements over Base for 8-issue pipelines. The 

maximum improvement of TCI over Base increases to 78% (88%) for a 32-entry (64-entry) 

issue queue, as the opportunity cost of mispredictions is higher for the wider pipeline. On 

average, TCI achieves 20% (22%) IPC improvement over Base for a 32-entry (64-entry) 

issue queue. 

TCI consistently and significantly outperforms Seq CI, making clear that resequencing 

all CI instructions after a misprediction does not fully capitalize on control independence 

opportunity. Furthermore, as a consequence of limiting the window to the size of the RXB, 

Seq CI degrades performance on some benchmarks with respect to the ROB-free Base. 
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Proxy is not resource efficient. As seen in Figure 38 and Figure 39, for the 32-entry issue 

queue, TCI outperforms Proxy in all benchmarks. In some benchmarks (e.g., li, vpr), Proxy 

degrades with respect to Base as a result of issue queue pressure caused by proxy and CIDD 

instructions. The average gain for Proxy drops from 11% to 6% on a 4-issue pipeline when 

the issue queue size is reduced from 64 to 32. In contrast, TCI and Seq CI are less sensitive to 

the issue queue size. 

To understand the performance improvements of TCI, we refer to measurements in 

Table 7 (L2 load misses per 1000 instructions, branch mispredictions per 1000 instructions) 

and Figure 40. The latter provides a breakdown of branch mispredictions. Some 

mispredictions are not covered because they have a maximum CD path length that exceeds 

our chosen threshold of 256 (Non-CI Br) or they resolve before reconverging. For some 

mispredictions, control independence is attempted (CI Br) but it fails due to downgrade 

scenarios, two of which are (i) incomplete IRS (IRS downgrade) and (ii) exceed temp buffer 

(TB downgrade) thereby preventing RXB expansion. Control independence cannot be 

exploited in these cases. Due to this, in some benchmarks where branch misprediction rates 

are fairly high, Perfect shows great promise but TCI cannot exploit enough control 

independence resulting in more modest performance gains (e.g., bzip, compress). 
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Figure 40. Breakdown of branch mispredictions. 

To not artificially favor misprediction-tolerance, we chose the high quality perceptron 

predictor (Jimenez, et al., 2001). Notice in Table 7 branch misprediction rates for TCI are 

typically higher than for Base. This is mainly due to gaps in global history (branches in 

mispredicted CD regions are omitted from global history used by future branches). We found 

the perceptron predictor to be relatively more resilient to history gaps than gshare. Further, 

TCI can tolerate some extra mispredictions. 

We analyze the 64-entry issue queue results by grouping benchmarks based on branch 

misprediction rates (Table 7) and control independence coverage (CI coverage) (Figure 40): 

� Group A (bzip, compress, go, gzip, twolf, and vpr): High misprediction frequency (9 

to 21/1K inst.). Gzip and twolf post significant speedups due to high CI coverage 

(92% and 83%): 64% and 52% on 4-issue, and 88% and 64% on 8-issue. Go posts a 

medium speedup: 30% for 4-issue and 35% for 8-issue. Though it has the highest 

branch misprediction frequency, benefits are limited by medium CI coverage (64%), 

leaving about 7.6 mispredictions uncovered per 1000 instructions. For bzip, 

compress, and vpr, CI coverage is moderate (54%, 54%, and 40%), leading to 
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moderate speedups: 7%, 11%, and 14% for 4-issue, and 7%, 14%, and 19% for 8-

issue. 

� Group B (crafty, gcc, ijpeg, li, and parser): Moderate misprediction frequency (4 to 

8/1K inst.). For crafty, gcc, ijpeg, and parser, CI coverage is medium to high (55%-

88%), yielding modest speedups: 11%, 10%, 28%, and 11% on 4-issue, and 17%, 

12%, 45% and 12% on 8-issue. Li shows low speedups (1-3%) due to its low CI 

coverage (37%). In li, most mispredicted branches resolve before fetching their 

reconvergent points. 

� Group C (gap, perl, and vortex): Low misprediction frequency (less than 3/1K inst.). 

Group C does not benefit from TCI due to excellent accuracy in the simulated 

regions, yielding performance close to Perfect. 

� Group D (mcf): Moderate misprediction frequency, but very high L2 miss rate. For 

mcf, the simulated region is dominated by a high frequency of serialized L2 misses, 

as shown in the second column of Table 7. Despite high CI coverage (81%), the 

penalty of branch mispredictions is masked since they occur in the shadow of L2 

misses. This is confirmed by the negligible gains for Perfect. 

6.11.2  Instruction breakdown 

Figure 41 characterizes retired instructions in the context of branch mispredictions. SBM 

(“shadow of branch misprediction”) refers to control independent instructions that are 

logically in the window when a prior misprediction is detected. (In TCI, these are preserved 

whereas Base squashes and re-fetches them.) In contrast, instructions before mispredictions 

or instructions fetched after a misprediction has initiated servicing, are not considered to be 
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in the shadow of a branch misprediction (Non-SBM). SBM instructions represent control 

independence opportunity, Non-SBM do not. 

 
Figure 41. Breakdown of all instructions. 

SBM instructions are broken down further into those that were inserted into the RXB 

(CIDD) and those that were not (CIDI). Among those that were inserted into the RXB, we 

indicate if they had to be reinjected (CIDD reinject) or not (CIDD no-reinject). SBM+CIDD 

reinject occurs when the instruction is CIDD with respect to the mispredicted branch (must 

re-execute). SBM+CIDD no-reinject occurs when the instruction is not CIDD with respect to 

the mispredicted branch, but rather a different correctly predicted branch. Thus, SBM+CIDD 

no-reinject is tantamount to SBM+CIDI with respect to the misprediction. 

Summing up, the top two classes in Figure 41 (SBM+CIDD no-reinject, SBM+CIDI) 

represent savings compared to conventional (full) recovery. Benchmarks in Group A and 

Group B have the largest percentages of these misprediction-independent instructions (7%-

33% for Group A and 4%-11% for Group B). Their speedups in Figure 38 and Figure 39 

correlate well with their percentages of saved instructions. 
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6.11.3  Branch prediction and branch misprediction servicing policies 

When using conventional branch recovery, all CI instructions after the branch are 

squashed are re-fetched. During re-fetching, the CI branches are re-predicted with a repaired 

global history register (GHR) that reflects the corrected branch and new branches in its 

correct CD region. This process may overturn some initial predictions, eliminating some 

branch mispredictions in the re-fetched CI region. On the other hand, control independence 

implementations keep CI instructions in the window after detecting a branch misprediction; 

hence, CI branches do not get to be predicted with the repaired GHR. This may introduce 

additional branch mispredictions in control independence implementations compared to 

conventional processors. To avoid these additional branch mispredictions, we choose a 

branch predictor that is somewhat tolerant of an incomplete GHR. In our studies, we have 

found that the perceptron branch predictor is superior to the gshare branch predictor in its 

tolerance to the imperfect GHR. Hence, we incorporate the perceptron branch predictor in all 

our runs. In addition, while reconstructing the RXB, we re-predict branches that have not 

been truly resolved yet (i.e., branches in the RXB). This allows us to mimic the branch re-

prediction process in conventional processors and detect possible mispredictions early 

(Rotenberg, et al., 1999). 

In conventional processors, mispredicted branches are serviced immediately once their 

outcomes are known. This leads to the highest performing implementation. This is not 

always true in control independence implementations. Since CI branches may execute 

multiple times with incorrect source operands from earlier branch mispredictions, it may be 

better to wait until the source operands are truly stable (CIDI) before servicing the confirmed 
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branch misprediction. Hence, we are faced with either allowing branches to execute 

speculatively with whatever data they have, with the threat of false mispredictions 

(Rotenberg, et al., 1999), or delaying their execution until we can verify that their sources are 

correct (the poison vector is clear). 

In TCI, we found that the best combination happens to be (1) allowing branches to 

execute speculatively and (2) only re-predicting branches that have not executed or that have 

executed with unconfirmed data. In Figure 42, we present results for four models. The first 

does not service branches speculatively and does not re-predict branches at all (TCI:). The 

second only allows branches to be serviced speculatively (TCI: Spec. Br service). The third 

only re-predicts branches that have not executed or have executed with unconfirmed data 

(TCI: Repredict Br). The fourth services branches speculatively and re-predicts branches that 

have not executed or that executed with unconfirmed data (TCI: Spec. Br service + Repredict 

Br). 

Servicing branches speculatively improves performance most of the time, as can be seen 

in the harmonic mean IPC presented in Figure 42(d). However, it degrades performance in 

some benchmarks, such as gap and li. Branch re-prediction improves performance in all 

benchmarks except compress, where there is a slight degradation. Using both these 

techniques together further improves performance. The two techniques can be combined, 

resulting in higher performance than using either technique separately. 
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(a) 

 
(b) 

 
(c) (d) 

Figure 42. Branch prediction and branch misprediction servicing policies. 

6.11.4  Memory dependence predictor 

In TCI and other control independence implementations, predicting memory 

dependencies faces additional challenges. Unlike processors with conventional branch 

misprediction recovery, control independence implementations have to deal with holes in the 

middle of the window caused by branch mispredictions. These holes may introduce wrong 

store instructions from the wrong CD region or delay correct stores from the correct CD 

region. Normal memory dependence predictors are not designed to deal with these holes in 

the instruction window. 
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In this section, we investigate different memory dependence predictors and their impact 

on the performance of TCI. The first predictor is conservative and chooses to stall all load 

instructions until all prior stores have computed their addresses (Always stall). The second 

predictor allows loads to bypass unresolved stores, but if any load causes a memory 

violation, then, for the remainder of execution, this load will have to stall until all prior stores 

have computed their addresses (Only stall violation). The third predictor is very aggressive 

and allows all loads to bypass unresolved stores freely. The next two predictors are based on 

the store-set predictor that monitors relationships between stores and loads. The basic store-

set predictor is studied (Store sets), as well as a modified store-set predictor that adds 

branches to the store0set predictor (Store/Branch sets). The intuition behind this modification 

is that branches act as proxies for stores in their CD region. Hence, a branch can give future 

loads hints on which stores may be fetched in the future, if this happens to be a mispredicted 

branch. 

Figure 43 shows IPC results of the TCI architecture with different memory dependence 

predictors. Figure 43(a)-(c) give the results of individual benchmarks, whereas Figure 43(d) 

shows the harmonic mean IPC results. Notice that predictors based on the store-set predictor 

outperform the basic predictors in all benchmarks except bzip, li, and vpr. We also notice that 

the branch-set enhancement further improves on the performance of the base store-set 

predictor, on average. For individual benchmark results, we notice that all benchmarks 

except bzip and vpr see an improvement. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 43. Memory dependence predictors. 

6.11.5  Sensitivity to the number of checkpoints and poison vector bits 

TCI leverages the checkpoint tags to identify branches covered by control independence. 

The more checkpoints allocated to the processor, the higher the branch misprediction 

coverage and, hence, higher potential performance. 

Figure 44 shows the IPC results of the TCI architecture with 4, 8, 16, and 32 

checkpoints. Figure 44(a)-(c) give the results of individual benchmarks, whereas Figure 

43(d) shows the harmonic mean IPC results. The results show that increasing the number of 

checkpoints helps performance. In addition, the performance starts to saturate with 16 
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checkpoints. In vpr, we notice that TCI with 16 checkpoints outperforms TCI with 32 

checkpoints. Analyzing the data gathered from the two runs, the reason for this degradation is 

a higher branch misprediction rate. By covering additional branch mispredictions in vpr, we 

worsen the accuracy of the branch predictor (possibly due to corrupting the GHR more with 

32 checkpoints then with 16 checkpoints). 

(a) (b) 

(c) (d) 

Figure 44. TCI IPC results with varying number of checkpoints. 
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6.11.6  Sensitivity to the number of CFSs and to IRS optimizations 

TCI leverages the CFS to detect the reconvergence of branches. Initially, the leading 

sequencer pushes the reconvergent PCs of fetched branches onto the CFS. When the 

reconvergent PC of a branch is fetched, the CFS detects reconvergence and the process of 

copying the CIDD instructions into the RXB is commenced. During branch misprediction 

recovery, the newly fetched CD region may itself contain internal control-flow. To be able to 

detect inner reconvergent points, we leverage a second CFS that is devoted to the repair 

rename map. Without this second CFS, the internal branches would need to rely on the 

original reconvergent point, which may not be optimal since it is a distant reconvergent point 

for these branches. 

In this section, we first investigate the effect of using the CFS only with the speculative 

rename map versus allocating an additional CFS for the repair rename map. Second, we look 

at the effect of using IRS optimizations discussed in Section  4.3.1.4 on performance. 

Figure 45 shows the IPC results of the TCI architecture with one or two CFSs. For both 

models, we study the effect of using an unoptimized IRS or an optimized IRS. Figure 45(a)-

(c) give the results of individual benchmarks, whereas Figure 45(d) shows the harmonic 

mean IPC results. From the results, we can conclude that, on average, both multiple CFSs 

and an optimized IRS improve the performance of TCI. However, some benchmarks show 

different trends. For example, twolf only benefits from using multiple CFSs and not from 

using the optimized IRS. On the other hand, gap only benefits from using an optimized IRS. 
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(a) (b) 

(c) (d) 

Figure 45. TCI IPC results with a single or multiple CFSs while using an optimized or 

unoptimized IRS. 
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6.12 Additional related work 

We already compared and contrasted TCI with the following control independence 

architectures in  Chapter 5 and, in the interest of space, that discussion is not repeated here: 

speculative multithreading architectures such as Multiscalar (Sohi, et al., 1995) and DMT 

(Akkary, et al., 1998), trace processors (Rotenberg, et al., 1999), and superscalar based 

implementations including instruction reuse (Sodani, et al., 1997), dual ROBs (Chou, et al., 

1999), Skipper (Cher, et al., 2001), exact convergence (Gandhi, et al., 2004), and a generic 

implementation (Rotenberg, et al., 1999). 

ReSlice (Sarangi, et al., 2005) uses slice re-execution to selectively recover from data 

misspeculation. Correct repair is guaranteed by checking for sufficient slice conditions. In 

general, ReSlice is designed for any data misspeculation handling including control-flow 

influenced data misspeculation, but it was studied only for thread-level speculation (TLS). 

ReSlice aborts slice re-execution if there are branches (whether in the slice or not) that 

change the slice’s instructions. As we illustrated with the example in Section  6.3.1 of two co-

mingled CIDD slices, RXB reconstruction allows slices to change, moreover, the co-mingled 

slices can resequence in any order, with correct results. 

The continual flow pipeline (CFP) (Srinivasan, et al., 2004) is related to our work in that 

CFP takes an analogous approach for releasing resources of L2 miss dependent instructions. 

However, CFP does not exploit control independence. 
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Chapter 7  

Summary and future work 

In this thesis, we investigated two main claims. First, we compared different branch 

misprediction tolerance techniques qualitatively and quantitatively, including multipath, 

static/dynamic predication, skip-based control independence (CI-skip), and speculation-based 

control independence (CI-speculate). As a result of this comparison, we claim that CI-

speculate is the best-performing branch misprediction tolerance technique on a processor 

with realistic resources. The chief reason is that CI-speculate does not penalize correctly 

predicted branches and, hence, complements the branch predictor.  

Second, we analyzed the strengths and weaknesses of different CI-speculate models, 

including Proxy, Seq CI, and Seq CIDD, in the context of a high-performance checkpoint-

based substrate compatible with control independence. We showed that Seq CIDD combines 

the resource efficiency of Seq CI and the bandwidth efficiency of Proxy, while eliminating 

their disadvantages.  

Finally, we presented Transparent Control Independence (TCI), a new microarchitecture 

that implements the Seq CIDD model. By proactively identifying CIDD instructions in 

preparation for a branch misprediction, TCI only re-renames CIDD instructions and only 

reallocates resources to CIDD instructions when recovery is needed. Hence, TCI yields a 

highly streamlined pipeline that quickly recycles resources based on conventional 

speculation, enabling a large window with small cycle-critical resources, and prevents many 

mispredictions from disrupting this large window by fetching a condensed and self-sufficient 

recovery program.  
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This thesis has investigated the TCI microarchitecture in detail. However, many 

interesting directions are left for future work. 

• Overcome CI-speculate and CI-skip limitations: CI-speculate is limited by the 

wasted bandwidth/resources consumed by the incorrect CD instructions. On the other 

hand, CI-skip does not waste any bandwidth/resources on incorrect CD instructions, 

at the expense of penalizing many correctly predicted branches. It is worthwhile 

investigating new architectures that overcome both CI-speculate’s and CI-skip’s 

limitations. 

• Control independence aware compiler: Control independence can only tolerate 

mispredicted branches with reconvergent points. There remains a subset of 

mispredicted branches with no reconvergent points (no reconvergence information or 

very large CD region). In addition, the performance of control independence is 

dependent on the quality of the CI region (ratio of CIDI instructions to CIDD 

instructions). The compiler can potentially increase the performance of control 

independence by generating favorable code. 

• Scalable performance: Branch mispredictions limit performance scalability of 

control independence based superscalar processors by wasting resources and 

bandwidth on incorrect CD instructions. Scaling the window size and issue width 

does not result in proportional performance scaling. Implementing TCI on top of 

Thread-level Speculation (TLS) may achieve scalability because TLS allocates some 

resources and bandwidth to future CI instructions while still allocating resources and 

bandwidth near the commit point (balancing CI-skip and CI-speculate). A drawback 
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of TLS is the inability to repair branches that have speculatively retired long ago, and 

that depend on misspeculated loads. TCI can solve this by adding control-flow slices 

to load recovery slices, e.g., overcoming weaknesses of ReSlice (Sarangi, et al., 

2005). TCI would provide load-induced control-flow misspeculation tolerance within 

a large speculative thread and TLS would balance resources and bandwidth fairly 

between near and distant threads. We believe this would lead to scalable 

performance with resource scaling. 

• Additional uses of the recovery program: One of the interesting contributions of the 

TCI microarchitecture is the ability to repair the processor’s state after 

misspeculation using a self-sufficient recovery program. This concept could be 

extended to repair other types of speculation. In particular, I would like to investigate 

the ability to speculate past page faults and then leverage a self-sufficient recovery 

program to recover from any misspeculation. 
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