
Towards an Energy Efficient Branch Prediction
Scheme Using Profiling, Adaptive Bias

Measurement and Delay Region Scheduling
Michael Hicks, Colin Egan, Bruce Christianson, Patrick Quick

Compiler Technology and Computer Architecture Group (CTCA)
University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK

E-Mail: m.hicks@herts.ac.uk, c.egan@herts.ac.uk

Abstract—Dynamic branch predictors account for between
10% and 40% of a processor’s dynamic power consumption.
This power cost is proportional to the number of accesses made
to that dynamic predictor during a program’s execution. In
this paper we propose the combined use of local delay region
scheduling and profiling with an original adaptive branch bias
measurement. The adaptive branch bias measurement takes note
of the dynamic predictor’s accuracy for a given branch and
decides whether or not to assign a static prediction for that
branch. The static prediction and local delay region scheduling
information is represented as two hint bits in branch instructions.
We show that, with the combined use of these two methods, the
number of dynamic branch predictor accesses/updates can be
reduced by up to 62%. The associated average power saving is
very encouraging; for the example high-performance embedded
architecture n average global processor power saving of 6.22%
is achieved.

Keywords: Branch Prediction, Power Consumption, Biased
Branches, Profiling.

I. I NTRODUCTION

The latency associated with branch instructions can be
overcome by various means; these include branch predic-
tion (dynamic and static), hardware multithreading, delayed
branches and branch removal by aggressive static instruction
scheduling. Currently, state-of-the-art processors tend to use
dynamic branch prediction, but the use of dynamic predictors
can consume large amounts of the silicon space and they can
also consume large amounts of the power budget. In current
processors, a branch predictor can consume between 10% and
40% of the overall CPU power budget [1]. The power cost is
directly proportional to the number of accesses made to the
dynamic predictor [2] and the power cost of modern dynamic
branch predictors is comparable to that of a cache. In high
performance architectures such costs may be acceptable, but
we argue that such profligate use of silicon area is unlikely
to be cost effective in low-power applications and will be an
unnecessary drain on power. The effective use of silicon space
and low power consumption is crucial for the embedded pro-
cessor market. With the increasing pipeline depth of embedded
processors, the accuracy of branch prediction is now becoming
an important factor for embedded processor performance and

a mispredicted branch will severely impact on performance. At
the same time, power consumption must be kept to a minimum
to ensure device usage longevity.

There is an equally valid counter argument that considers
the power cost of a highly accurate dynamic predictor is offset
by the effects of its accuracy [2]. Even though a dynamic
predictor uses a great deal of power, the increased prediction
accuracy and improved processor performance it provides
results in power saving by the reduced number of branch
mispredictions, negating the necessity of stalling the processor.
This is because considerable power is consumed in a branch
misprediction by the execution of instructions that cannot be
allowed to be committed and recovery to some safe state.

In this paper, we present an approach for reducing the
number of accesses and updates made to a dynamic branch
predictor that combines scheduling the local delay region with
profiling using an adaptive bias measurement. In the latter half
of this paper, encouraging experimental results are presented.
The results detail the extent to which the number of dynamic
branch predictor accesses can be reduced, and also the amount
of power that can be saved in an example architecture.

II. PREDICTING BIASED BRANCHES

In many cases the direction of a branch tends to be biased
to either the taken path or to the not-taken path and therefore
demonstrates a skewed distribution, which is alternatively
referred to as bimodal. Using profiling, the frequency of
executed branch paths can be determined and then used as
a basis for predicting future runs of the program [4] [5]. In
profile based prediction methodologies a static prediction-bit,
or hint bit, is usually incorporated into the branch instruction
format. This bit is used by the compiler to specify the
prediction direction based on the branch’s bias (taken or not-
taken). Since they use the observed dynamic behaviour of
branches, profile based branch prediction schemes differ from
other static branch prediction schemes that use compile time
heuristics. Also unlike dynamic branch prediction schemes,
static profiling does not require large amounts of hardware
support.



In this paper we use statically profiled branch prediction in
conjunction with a dynamic predictor. The idea of statically
profiled branch prediction is to avoid accessing the dynamic
predictor whenever possible, thereby saving power. However,
the profiled static prediction must be accurate to ensure that
there is no impact on dynamic prediction accuracy, since
inaccurate predictions are expensive in terms of both perfor-
mance and power [6] [2] [7]. In the static code the number
of biased branches appears to be small, but during program
execution biased branches tend to be executed repeatedly and
are therefore executed frequently [8]. Dynamic prediction is
unnecessary for such biased branches as the direction of the
branch can be statically profiled. This approach will reduce
the number of accesses to the dynamic predictor and therefore
save power.

Using some form of hint bits, a profiled static prediction
can be used either to bypass the dynamic predictor or be
used as a fallback when no prediction information is available
dynamically. To save power in embedded processors it is
desirable to remove dynamic predictions whenever possible.
The drawback to removing biased branches from dynamic
prediction using traditional compiler loop analysis is that any
static prediction reflected by this method will almost always
be less accurate than a dynamic prediction.

This drawback is intertwined with the definition of a biased
branch. Previous approaches have used a fixed bias level [9],
or, in effect, no particular bias level at all; a branch is simply
marked as “likely to be taken” or “unlikely to be taken”. Scant
regard is given to how this will reconcile with the behaviour
of the dynamic predictor in which it will be executing, and
often the dynamic predictor will be more accurate [10]. Con-
sequently, branch removal in this way impacts on performance
and increases power consumption.

In our approach we take such problems into account and we
propose the use of the dynamic bias measurement technique
with profiling and local delay region scheduling. In local
delay region scheduling the compiler schedules instructions
from the same basic-block into the delay region following a
branch instruction. These instructions, are those that would be
executed irrespective of branch outcome and such that program
semantics remain unaffected.

III. A DAPTIVE BIAS MEASUREMENTTHROUGH

PROFILING

Removing branches statically has traditionally been used
either as an alternative to branch prediction, or, when used
in conjunction with a dynamic predictor, it has been used as
a fallback mechanism. The limitation of profiled static bias
prediction from compiler branch heuristic analysis is accuracy.
An improvement over simple heuristic static code analysis is
to profile the compiled program at runtime to monitor how it
behaves.

A. Profiling

Profiling, in this case, refers to the observation of a given
program, at the assembly/machine level, while undergoing ex-

ecution with a sample dataset [4] [5]. This means each branch
instruction can be monitored in the form of a program trace
by a detailed history of selected instructions and any relevant
information extracted and used to form profiled static pre-
dictions where possible. A profiler is any application/system
which can produce such data by observing a running program.
The number of datasets that any given program is profiled with
will affect the likely ‘real’ accuracy of the profiling results.
Using a diverse range of datasets means the results will be
more widely applicable.

The advantage of profiling over heuristic static code analysis
is that a more precise boundary, or bias percentage, can be set
for what constitutes a branch as heavily biased, and hence
could be removed from dynamic prediction. Profiled traces
permit the exact bias of a branch instruction to be known
resulting in higher prediction accuracies.

B. Adaptive Bias Measurement

Profiling will be out performed by dynamic prediction for
many branches unless the bias level is set so high that only
extremely biased branches are removed and therefore profiling
should be used with due caution. Consequently, we only
only assign a profiled prediction to a branch where avoiding
dynamic prediction has no significant negative impact on that
branch’s dynamic prediction accuracy.

When profiling each branch in a program’s execution, an
ideal profiler records the directional history for each branch,
and also the prediction history [10] [5]. From this record
or trace, we compute whether a branch’s bias is equal to,
or greater than its associated prediction accuracy from the
dynamic predictor. This computation is key to the results we
present in this paper. Assuming a program is profiled against
an adequately varied data set, we show that these branches can
safely be removed from dynamic prediction through the use of
profiled hint bits. This approach to bias measurement also has
a beneficial side-effect that it removes a significant number
of difficult-to-predict branches. Furthermore, a branch with a
very low prediction accuracy, but a higher bias will be caught
by this method. Difficult-to-predict branches have a significant
impact on both performance and power consumption [6] [8].

IV. L OCAL DELAY REGION

Local delay region scheduling is the process of scheduling
branch independent instructions from before the branch in the
same basic-block into the delay slots to be executed by the
processor after the branch. A branch independent instruction
is any instruction whose result is not directly, or indirectly,
depended upon by the branch to compute its own behaviour.
The locally scheduled delay region, for a given branch, is
executed irrespective of the branch direction outcome, and
removes the need to predict for any branch where it can be
used. Figure 1 demonstrates the process.

It is not beneficial to use local delay region scheduling in
well optimised code and, where the delay region is very large
such as in deeply pipelined processors. This study is focused
on the embedded market where the number of delay slots tend



Fig. 1. Local delayed branch scheduling

to be low. Local delay region scheduling can be useful by
careful use and leaving other branches untouched for dynamic
prediction. Local delay region scheduling works particularly
well for an unconditional absolute branch that has a fixed
target address. Consequently, we propose the use of the local
delay region in conjunction with adaptive bias measurement.

V. H/W I MPLEMENTATION

The hardware modifications required to convey information
about static predictions, and therefore avoid the dynamic
predictor for a given branch, are relatively simple.

Many modern processors already predecode instructions
to determine whether to access the dynamic predictor unit;
in which case, hint information need only be included with
the branch instructions themselves. Some modern embedded
instruction sets [11] already include hint bits in branch instruc-
tions, although they are only used as a fallback. We incorporate
two hint bits into the branch instruction format, where the two
hint bits provide profiled branch behaviour information. To our
knowledge no compiler makes use of the two hint bits as we
describe in this paper, which represent the following branch
behaviour:

1) Statically predict taken. Do not access, or update, the
dynamic predictor for this branch.

2) Statically predict not-taken. Do not access, or update,
the dynamic predictor for this branch.

3) Use the locally scheduled delay region. Do not access,
or update, the dynamic predictor for this branch.

4) Use the dynamic predictor.

By default all instructions would be set to case 4. The
algorithm that describes how these hint bits are set is explained
in the following section.

In case 1, we have hinted that the branch should always
be assumed taken. This means that no access is required to
the direction prediction logic in the branch predictor unit.
However, the processor does not know until the decode stage
what the target address will be. Rather than any complexities
of computation, this is largely down to there being several dif-
ferent formats for branch instructions, and thus the position of
the target bits in the instruction is not known. Our simulations
have shown us that this is not the problem it seems at first:
over 75% of dynamic branches found to be dynamically biased
fall into a single instruction format - typically a single kind of
offset-branch (another 18% are absolute jump instructions, but
for these we use local delay region scheduling). This means
that with minimal hardware modification, simple logic can be
introduced to produce the target address for case 1 branches,

and hence avoid accessing the Branch Target-address Cache
(BTC) for predicted taken branches; this is significant for
power aware designs. In the case that the hint bits provide an
incorrect prediction, the existing dynamic branch prediction
logic is used to recover in the same way as a dynamic
misprediction (case 4).

The hardware modifications are shown in Figure 2. The
block below the I-Cache represents a fetched example instruc-
tion (in this case a hinted taken branch). The simple decoder is
a very small piece of hardware required to decode the two hint
bits from an instruction into the relevant processor signals. The
label for the local delay region is simply to indicate that this
hint must be used later (in the exe pipeline stage). Additionally,
outside of this diagram, during execution pipeline stage, the
two hint bits must also be examined to ensure that no update
occurs to the branch predictor which is also very important
for power aware processors.

Fig. 2. A simplified block diagram representation of the hardware modi-
fications required in the Instruction Fetch stage for the hardware simplicity
approach, in order to implement the universal hint bits

VI. SIMULATIONS

This section details the process of implementation and
testing of our dynamic branch prediction reduction methods,
and the associated hardware modifications.

A. EEMBC and Wattch

We use the Electronic Embedded Microprocessor Bench-
mark Consortium (EEMBC) benchmarks [12]. EEMBC was
chosen instead of the SPEC benchmarks as they represent a
more appropriate target for this type of algorithm.

EEMBC [12] is a benchmark suite consisting of around
forty separate benchmarks that are divided into five sections,
or subsuites: Automotive, Consumer, Networking, Office and
Telecom. Each subsuite represents a further specialisation
towards a particular behaviour characterisation. Table I shows
a simple breakdown of the five subsuites in EEMBC. Every
benchmark in the suite was executed to completion to generate
the results shown in the next subsection.

We use a modified version of Wattch [13], which itself is
a variation of the SimpleScalar processor simulator. Wattch
uses the Portable Instruction Set [Architecture] (PISA), which



TABLE I
THE FIVE EEMBC SUBSUITES WITH A LIST OF SOME OF THE TYPES OF

BENCHMARKS CONTAINED WITHIN EACH SUITE

SubSuite Benchmarks (selection of largest)
Automotive Angle-To-Time Conversion, Fast Fourier Transform,

Matrix Math...
Consumer JPEG Compression/Decompression, RGB to CMYK,

Grayscale image filter...
Networking IP Reassembly, Network Address Translation,

Route Lookup...
Office Bezier Curve Interpolation, Floyd-Stein Grayscale

Dithering, Bitmap Rotation...
Telecom Autocorrelation, Convolutional Encoder,

Viterbi Decoder...

is is a variant of the Mips instruction set. The Wattch pipeline
has seven stages, and two branch delay slots before branch
resolution. Local delay region scheduling was used to remove
dynamic predictor accesses for the unconditional absolute-
jump instruction formats, and our profiled adaptive bias mea-
surement was used to remove dynamic predictor accesses for
appropriately biased offset branch format instructions. The
static prediction/delay region usage information was repre-
sented using two redundant bits in the branch instructions
of the PISA instruction set. The required simulated hardware
modifications were minimal and were configured as described
in the previous section.

B. Algorithm

The algorithm used to configure the two hint bits in each
branch instruction was implemented as shown in Algorithm 1.

Input : All Assembly Files of Programs
Output : Appropriately Hinted Assembly Files
foreach Programdo

foreach Assembly Filedo
foreach Branch Instructiondo

Initially, set hint bits to “Use the dynamic
predictor for this branch”
if Branch == Unconditional Branchthen

Set hint bits to use local delay region and
move two instructions preceding branch
into delay region (if possible)

else
if Branch’s Profiled Bias≥ Dynamic
Branch Predictor’s Accuracy for this
Branch then

Set hint bits to Predict Profiled Bias
end

end
end

end
end

Algorithm 1 : Dynamic Branch Prediction Reduction Algo-
rithm

Figure 4 3 shows our profiling and hinting mechanism.
All of the runtime profiling was conducted on a ‘training’
input dataset. The results shown in the next subsection were

Fig. 3. Block model of the profiling and hinting regime

produced using a different ‘test’ dataset to ensure that no bias
to a particular dataset was represented.

C. Simulation Results

The results presented and discussed in this section were
produced using the processor configuration shown in Table II.
Since the first part of these results is primarily observing
branch instruction accuracy, the most important variable to
note is branch predictor used. The GShare predictor [14]
was chosen for it’s accuracy, size and general applicability.
The other specifications of the system were selected as a
representation of a modest high-performance embedded CPU
for use in applications such as PDAs and mobile telephones.

TABLE II
BASELINE CONFIGURATION USED TO GENERATE THE RESULTS SHOWN IN

THIS SECTION

HWattch Parameter Value
Issue/Decode Width 2 Instructions
Delay Slots 3
Branch Predictor GShare
Direction Predictor Table Entries 1024
BP History Width 8Bits
BTB Sets/Associativity 512 Entries/4 Way
Data Cache Size 1024 Sets/64bit Block Size/4Way
Instruction Cache Size 512 Sets/32bit Block Size
Clock Gating Regime Modelled Aggressive conditional clocking

(non-ideal) 15% power dissipation
with zero accesses

Compiler for EEMBC gcc -O2

Table III shows the occurrence of different branch instruc-
tions across the execution of the entire EEMBC benchmark
suite. The static occurrence refers to the proportion of branches
accounted for by a particular branch type in the static as-
sembly code. Dynamic occurrence refers to the proportion of
branches accounted for dynamically by a particular branch
type. Additionally, the third column shows whether this branch
type can be removed from dynamic prediction by either of
the techniques proposed. From this table we can see that
the majority of dynamic branches are potential candidates for
removal by either technique. Why a particular method can be
used, or not, is explained in the previous section.

1) Dynamic Predictor Access Reduction:Table IV shows
the success of using local delay scheduling and adaptive bias
measurement to remove accesses to the branch predictor. All
values shown in Table IV are averages for each subsuite. Aver-
ages were used due to the vast number of benchmarks in each
suite, and also because of the high behavioural similarities of



TABLE III
STATIC AND DYNAMIC BRANCH OCCURRENCE FOR EACHPISA BRANCH

TYPE, AND WHICH DYNAMIC ACCESS REMOVAL METHOD CAN BE USED

Branch Static Dynamic Applicable
Instruction Occurrence Occurrence Method
j 10.21% 17.31% Local Delay Region
jal 33.95% 3.58% Local Delay Region
jr 15.54% 3.55% None Used
jalr 2.32% 0.04% None Used
beq 18.18% 20.23% Bias Profiling
bne 16.46% 50.09% Bias Profiling
blez 1.52% 2.58% Bias Profiling
bgtz 0.27% 1.04% Bias Profiling
bltz 0.48% 0.39% Bias Profiling
bgez 1.06% 1.19% Bias Profiling

each suite. The average results were calculated by taking the
total across a whole subsuite and using it as the divisor for
the sum of the measured variable across the whole subsuite.
For instance, ‘Static Hint Rate’ was calculated by summing
all statically hinted branches across an entire subsuite, and
dividing by the entire subsuite sum of branches – not by
unweighted averaging. Figure 4 represents the same results
in graphical form with the addition of an overall average.

TABLE IV
RESULTS OF LOCAL DELAY REGION AND ADAPTIVE BIAS HINTING FOR

EACH EEMBC SUBSUITE

SubSuite Dynamic Static Hint Dyamic Dynamic
Branch Rate Access Stream
Rate Reduction Change

Automotive 17.57% 22.10% 56.42% 0.92%
Consumer 17.22% 30.80% 63.53% 0.49%
Networking 24.56% 10.57% 62.50% 0.48%
Office 19.57% 30.76% 46.82% 0.1%
Telecom 12.37% 20.49% 51.71% -0.03%
Average 18.59% 18.29% 62.01% 0.48%

Fig. 4. The average percentage access reduction to the dynamic branch
predictor for each EEMBC Subsuite

Each column in Table IV demonstrates the following:

• Dynamic Branch Rate – The percentage of instructions
in the dynamic stream that were branch instructions

• Static Hint Rate – The percentage of static branches that
were hinted

• Dynamic Access Reduction – The resulting reduction

in accesses to the dynamic branch predictor (both the
direction predictor and BTB)

• Dynamic Stream Change – The change in size (number of
instructions executed) of the dynamic instruction stream
as a result of the static hinting

These results demonstrate the effectiveness of the com-
bination of local delay region scheduling and adaptive bias
measurement for removing the need to dynamically predict for
many branches. The overall average of 62% dynamic branch
prediction reduction is extremely promising. Unsurprisingly,
the Consumer subsuite performed most successfully with the
algorithm. This is because of the highly cyclic nature of many
of the algorithms included in this subsuite: JPEG compression
and decompression for instance.

Most importantly, we can see that our dynamic branch
prediction reduction algorithm has no significant detrimental
effects on the performance of the program: Table IV shows
that the size of the dynamic instruction stream was not signif-
icantly expanded with additional instructions from increased
missprediction. In fact, in many individual cases, the number
of instructions executed was reduced. This is likely accounted
for by the removal of poorly dynamically predicted branches;
a branch with a bias greater than its accuracy is automatically
removed from dynamic prediction.

Although the average results in Table IV are representative,
there were some intrasubsuite exceptions. Notably these were:
Angle-To-Time Conversion benchmark in Automotive and the
Viterbi Decoder benchmark in Telecom. These had dynamic
prediction removal percentages of 11% and 35%, respectively.

2) Subsequent Power Saving:After simulating the number
of dynamic branch predictor accesses that could be removed
for the predictor used in our example architecture we then used
our variant of Wattch to model the amount of power than can
be saved. The dynamic branch predictor accounts for between
10% and 15% of global power dissipation in the example
architecture when all branches use dynamic prediction.

Demonstrating how much power can be saved is indicative
only for the example architecture used. The amount of power
saved in the branch predictor itself is generally proportional
to the dynamic access reduction as a result of the application
of our algorithm. However, the power saved in the branch
predictor gives no indication of the global power saved over
the whole processor, and also does not take into account any
additional delay incurred by the use of the access reduction
algorithm. Providing global processor power results is thus
useful, but the results depend on the relative size of the rest
of the processor compared to the dynamic branch predictor
unit.

The average global processor power savings per committed
instruction, for the architecture in Table II, are shown in
Table V. The results per committed instruction were calcu-
lated by dividing the total global power consumed during a
program’s execution by the number of committed instructions.
The power saving per committed instruction implicitly takes
into account any change in the size/delay of the instruction
stream as the number of committed instructions remains the



same for all test executions of the benchmarks; an increase of
the number of instructions executed after the application of the
reduction algorithm would scale the power saved in the branch
predictor when calculated for the committed instructions even
though branch predictor accesses may have been reduced.

TABLE V
AVERAGE POWER SAVING PER COMMITTED INSTRUCTION FOR NON-IDEAL

CLOCK GATING REGIME AND * IDEAL CLOCK GATING REGIME

EEMBC Average Best/Worst
Subsuite Power

Saving
Automotive 5.43% (*12.38%) 14.87% / 10.15%
Consumer 6.17% (*12.69%) 10.66% / 9.73%
Networking 6.84% (*14.53%) 14.73% / 10.60%
Office 5.66% (*13.56%) 11.38% / 10.07%
Telecom 4.10% (*10.07%) 11.14% / 9.21%
Overall 6.22% (*13.47%) N/A

The standard power saving results in Table V are for
the non-ideal clock gating regime described in the processor
specification Table II. However, we have additionally included
the power saving results for a more ideal clock gating algo-
rithm with close to zero dissipation on zero accesses. These
additional results are denoted with an asterisk (*).

Figure 5 shows the standard, non-ideal results, but also
includes the average power saving per instruction as if no
accesses were made to the dynamic branch predictor (Free
BP – whilst still maintaining the same prediction accuracy).
This allows a comparison between the success of the power
saving and the absolute ceiling value possible.

Fig. 5. Average power saving per committed instruction

Although Figure 5 shows that the algorithm is not ‘perfect’,
we must remember that not all branch prediction accesses are
removed and as such it will not be possible to be ideal without
impacting heavily on performance, and thus power.

VII. C ONCLUSIONS ANDFUTURE WORK

Dynamic branch predictors cannot be removed from proces-
sors while high performance and low power consumption are
issues [6]. However, the results in this paper have shown that,
in an embedded context, the number of accesses that need to
be made throughout a program’s execution can be dramatically
reduced: in this example architecture by 62%. While previous
attempts at power saving have focused on the introduction of
hardware units to monitor dynamic behaviour, our approach

can achieve similar levels of access reduction, but without
the need to significantly modify hardware. The number of
dynamic predictor accesses that can be removed with this
approach is highly dependent on the accuracy of the dynamic
predictor being used. In this paper we used a very accurate
dynamic predictor, but a higher reduction can be achieved in
architectures with a less accurate dynamic branch predictor.
Additionally, this approach is applicable to both SuperScalar
and VLIW processors.

The amount of power saved, for the non-ideal clock gating
regime, averaged at 6.22% global power saving across the
EEMBC benchmark suites. This result is significant and very
encouraging; in architectures where the branch predictor is
relatively more expensive (in terms of power) this figure
will be higher. When considering the predecode logic that
already exists in most processors, the hardware modifications
are minor and easy to accommodate. The time required to
simulate, profile, assign static predictions and generate results
was under 90 minutes for the entire EEMBC suite on a
standard modern desktop machine, and this process is required
only once before a program’s distribution. For these small
costs, an average power saving of at least 6% is highly
attractive for processors in embedded devices that account for
a large proportion of the whole device’s limited energy budget.

REFERENCES

[1] Parikh, D., Skadron, K., Zhang, Y., Barcella, M., Stan, M.R.: Power
issues related to branch prediction, IEEE HPCA (2002)

[2] Egan, C., Hicks, M., Christianson, B., Quick, P.: Enhancing the i-cache
to reduce the power consumption of dynamic branch predictors, IEEE
Digital System Design (July 2005)

[3] Seng, J.S., Tullsen, D.M.: Exploring the potential of architecture-level
power optimizations, PACS (2003)

[4] Fisher, J.A., Freudenberger, S.: Predicting conditional branch directions
from previous runs of a program. In: Proceedings of the 5th International
Conference on Architectural Support for Programming Languages and
Operating Systems, Boston. (October 1992)

[5] Hicks, M., Egan, C., Christianson, B., Quick, P.: Htracer: A dynamic
instruction stream research tool, IEEE Digital System Design (July 2005)

[6] Parikh, D., Skadron, K., Zhang, Y., Stan, M.: Power aware branch pre-
diction: Characterization and design. IEEE Transactions On Computers
53(2) (February 2004)

[7] Martin, A.J., Nystrom, M., Penzes, P.L.: Et2: A metric for time and
energy efficiency of computation. (2003)

[8] Vintan, L., Gellert, A., Florea, A., Oancea, M., Egan, C.: Understanding
prediction limits through unbiased branches. In: Advances In Computer
Systems Architecture. Volume 4186-0480 of Lecture Notes In Computer
Science., Springer-Verlag (September 2006) 480487

[9] Jacobsen, E., Rotenberg, E., Smith, J.: Assigning confidence to con-
ditional branch predictions, IEEE 29th International Symposium on
Microarchitecture (1996)

[10] Hicks, M., Egan, C., Christianson, B., Quick, P.: Reducing the branch
power cost in embedded processors through static scheduling, profiling
and superblock formation. In: Advances In Computer Systems Archi-
tecture. (September 2006)

[11] IBM: PowerPC Instruction Set Manual. (2005)
[12] Levy, M.: The embedded microprocessor benchmark consortium. Online

(2005)
[13] Brooks, D., Tiwari, V., Martonosi, M.: Wattch: a framework for

architectural-level power analysis and optimizations, 27th annual inter-
national symposium on Computer architecture (2000)

[14] Egan, C.: Dynamic Branch Prediction In High Performance Super Scalar
Processors. PhD thesis, University of Hertfordshire (August 2000)


