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ABSTRACT
In  this  paper  we  discuss  an  alternative  to  the  existing  branch
prediction  algorithms,  called  pre-computed  branch  prediction.
This method does not actually involve prediction, as the branch's
outcome is calculated as soon as its last operand is known.  We
attempted to validate the claim that pre-computed branches give a
higher  rate  of  performance  than  the  existing  branch  prediction
methods, by implementing the pre-computed branch algorithm in
SimpleScalar.  After analyzing our data, we concluded that one
does get a higher hit rate and IPC if pre-computed branches are
used, which results in increased performance.

1.  INTRODUCTION
Branching is a big problem in computer architecture, especially
with modern processors that run at such high clock speeds and
contain  increasingly  deeper  pipelines.   Branches  interrupt  the
control flow of a processor, which can then decrease performance
significantly  if  that  branch is not  handled correctly.   There are
numerous methods used today to try and minimize this negative
effect on performance.  We designed this project after reading a
paper that discusses one approach to solving this problem, called
"An  Alternative  to  Branch  Prediction:  Pre-Computed
Branches"[6].   Pre-Computed  Branch  Prediction  uses dedicated
hardware  to  keep  track  of  the  locations  of  branches  and  their
operands.  Then whenever that branch is encountered again, the
pre-computed branch hardware can figure out its outcome as soon
as its arguments are computed.  This means that except for the
very first time a branch is encountered, and except for structural
hazards due to the prediction table size, the processor can know
with 100% certainty  whether  the branch is taken and what the
target of the branch is.
To  investigate  the  ideas  of  their  paper,  we  first  modified  the
SimpleScalar sim-func simulator to see what kind of speedup we
could  expect  from  implementing  the  pre-computed  branch
architecture.   We  then  emulated  the  pre-computed  branch
architecture in the SimpleScalar sim-DLX simulator to see if our
actual results matched our expected results. Lastly, we ran the six
integer  benchmarks  with  pre-computed  branches  and  compared
the  results  to  those  obtained  by  using  the  traditional  branch
prediction algorithms.

2.  BACKGROUND
In  most  programs,  between  10  to  20% of  the  instructions  are
branches.  There are methods that we can use to try and predict
whether a branch is taken,  but  ultimately they are just  guesses,
which  have  to  guess  incorrectly  a  portion  of  the  time.   If  the

processor predicts incorrectly, but it has already begun to execute
instructions from the incorrect branch, then it is forced to flush all
of  the  wrongly-predicted  instructions  after  the branch  and  start
over.   This  results  in  a big  loss  of  performance.   And it's  not
enough to simply predict whether a branch is taken or not - we
must also be able to figure out the value of the new PC, or else we
will have to stall.  Therefore, good branch handling methods are
essential if we are going to get the most out of a processor.
There are many methods used in  modern processors to try and
avoid  the potential  performance hit  caused by  branches.   If  no
tricks were used at all, we would have to wait until the end of the
execution  stage of the pipeline  every time a branch instruction
was encountered, to know exactly what instruction to fetch next.
Assuming  that  15%  of  the  instructions  are  branches,  and  the
execution  stage  was  the  third  stage  of  the  pipeline,  this  could
cause a 30% increase in the CPI of a processor.

2.1 Branch Prediction Methods
Speculative execution is used to try and avoid these control stalls.
With speculative execution, the processor guesses whether or not
the  branch  is  taken,  and  if  so  what  its  target  is.   Once  the
processor figures out this information, it can begin executing at
that point immediately.  Later on, when the result of the branch is
actually  known,  the  processor  can  see  whether  its  guess  was
correct  or  not.   If  the  guess  was  correct,  the  processor  can
continue to execute.  But if the guess was incorrect, the processor
must now flush its pipeline of all the incorrect instructions it has
been executing, as well as undo any incorrect changes that were
made.
Branch prediction is the method used to "guess" whether or not a
branch is taken.  There are two kinds of branch prediction, static
and  dynamic.   Static branch  prediction  schemes always do  the
same  thing:  always  predict  taken,  always  predict  not  taken,
always  predict  certain  opcodes  taken,  etc.   Always  predicting
taken  isn't  a  terrible  idea,  because  about  65% of  branches  are
taken - but this still means a 35% misprediction rate.  Dynamic
branch  prediction,  on  the  other  hand,  uses  special  hardware  to
determine whether a branch is taken.
One kind of dynamic branch prediction is a Branch History Table
(BHT).  The BHT is a 1-bit wide table that is indexed by the least
significant bits of a branch PC.  When a branch is encountered,
the BHT is checked to see whether that branch was taken or not
taken  the  previous  time  it  was  encountered.   If  there  is  a
misprediction, the BHT is updated.  However, multiple PCs may
map to the same BHT entry,  and in addition it  will  mispredict
every  time  the  branch  outcome  switches.   To  improve  on  this
model, two-bit saturating counters were introduced.  The two-bit



counters perform better on average because they must mispredict
twice in order to change their prediction.  Correlating predictors
are  another  dynamic  branch  prediction  method.   Correlating
branch  predictors  base  their  predictions  on  the  outcomes  of
branches that occurred recently in the program, because there is
often  some  correlation  between  the  current  branch  and  the
previous  few  branches.   Hybrid  predictors  have  multiple
predictors,  each using a different  predictor  scheme.  There is a
"chooser" which selects which scheme to use for each branch.  If
the chosen predictor is wrong for a given branch, the chooser is
flipped for that branch and the other scheme is used until the next
misprediction.
Predicting whether or not a branch is taken is just one aspect of
speculative execution - you also need to know what the target PC
is.  A branch target buffer (BTB) is used to keep track of previous
branches  and  their  targets.   When an instruction  is fetched,  its
address  is  used  as  an  index  into  the BTB table.   If  there  is  a
match, we know that the instruction is a branch.  If that branch is
predicted as taken, then the branch destination is obtained from
the BTB, and the processor begins to fetch and execute at that
new  instruction.   Certain  BTBs  not  only  store  the  destination
address, but also store the entire instruction at that address.  This
is  called  a  Branch Target  Cache  (BTC).   However,  BTBs and
BTCs can be rather large, and therefore expensive to implement -
in terms of both money and chip space.

2.2 Need for a More Efficient Algorithm
Moore's  Law  states  that  the  number  of  transistors  on  CPUs
doubles  about  every  18  months  which  eventually  translates  to
double the performance in approximately every two years [8]. To
keep  up  with  the  Moore’s  law we would  need  more efficient
branch prediction techniques.
Modern  processors  use  pipelining  to  exploit  parallelism  and
improve  performance.  Conditional  branches  in  the  instruction
stream decrease performance by causing pipeline flushes in case
of  mis-prediction.  Efficient  branch  prediction  mechanisms  can
overcome this limitation by predicting the outcome of the branch
before its condition is resolved. As a result,  instruction fetch is
not  interrupted  as  often  and  the  window  of  instructions  over
which instruction level parallelism can be used increases. In fact,
accurate branch predictors can eliminate most of these pipeline
stalls and are thus critical to realizing the performance potential of
a processor. 
As the design trends of modern superscalar microprocessors move
toward wider issue and deeper super-pipelines, effective branch
prediction becomes essential to exploring the full performance of
microprocessors.  Processors  with  a  simple  five-stage  pipeline
typically  have  a  two-cycle  branch  penalty.  For  a  four-way
superscalar  design,  however,  this  could  mean  a  loss  of  eight
instructions.  If  the  pipeline  is  extended,  the  branch  penalty
usually increases, resulting in the loss of even more instructions.
Since  programs  typically  encounter  branches  every  4–6
instructions,  inaccurate  branch  prediction  causes  severe
performance  degradation  in  highly  superscalar  or  deeply
pipelined designs. Improving branch prediction accuracy by using
new  more  efficient  algorithms  is  important  for  reducing  these
larger mis-prediction penalties. 
To  increase  the  branch  prediction  accuracy  different  branch
prediction techniques have been developed as mentioned above.
These branch prediction schemes can achieve average prediction
accuracy  in  the  range  of  80-95%  depending  on  the  type  of
prediction  and  the  program  being  executed.  Although  it  must
signify a good branch prediction performance, there is a growing

need  for  new techniques  that  can  be  used  to  improve  it  even
further,  in  order  to  stay with new advances being  made in  the
field  of pipelining.  One of the effective techniques that can be
used in this regard is pre-computed branch algorithm.

3.  PRE-COMPUTED BRANCHES
As we have seen, there is a need to develop a branch prediction
algorithm that outperforms today’s  traditional branch prediction
algorithms  like  two  bit  counters,  two-level  adaptive  branch
predictors  [1,2,3,4]  and  hybrid/tournament  predictors  [5].  This
paper will demonstrate an algorithm that is an alternative to the
traditional  prediction  algorithms.  In  this  paper  we  detail  and
implement  the  pre-computed  branch  prediction  algorithm
described in [6]. Instead of predicting the branch outcome, a pre-
calculated branch prediction (PCB) determines the outcome of the
branch as soon as all the operands of the branch instruction are
known. This outcome is then cached in to a ‘prediction’  table
(PT). The main idea of the pre-calculated branch algorithm is that
each branch, when first encountered, inflicts a capacity miss; then
this branch is cached into the prediction table, the result of any
subsequent non-branch instruction that modifies any operand of a
cached branch instruction is stored in an extension of the register
table called the ‘register  unit’  table (RU). The outcome of the
branch is then recalculated and cached back into the PT. Through
this  algorithm,  except for the first time and except for capacity
misses due to the size of the prediction table, every branch will be
predicted with 100% accuracy. 

3.1 Implementation Methodology
Two tables are required to implement pre-computed branches- the
‘register unit’  table (RU) and the ‘prediction’  table (PT). The
RU table is an extension of the register file. The RU maintains the
register  file  meanings,  but  in  addition  to  the register  file,  each
entry in the RU also has two new fields named LDPC and RC.
The RC field is a reference counter that gets incremented by one
whenever an instruction, whose label is in the PC1 or PC2 field of
the  PT,  writes  into  the  attached  register.  Whenever  a  branch
instruction  is  evicted  from  the  PT  table,  the  RC  field  of  its
corresponding operates are decremented by one.  Therefore, if a
register has a RC field of 0 then it would mean that there is no
branch instruction in the PT table that uses that particular register
as an operand.  The  RU table  and  the PT table  can be seen in
Figure 1(a and b). 
The  PT  table  stores  the  pointers  to  the  last  branch’s  operand
producers (PC1 and PC2) along with the TAG of the branch. The
PT also stores the branches opcode in OPC and the register names
of the branches operands in nOP1 and nOP2 respectively. PRED
shows the path the branch will take when it is encountered next
(taken or not-taken). The LRU field is used to keep track of the
least  recently  used  branch.  The  size  of  the  PT  table  is  an
important  factor  in  calculating  pre-computed  branches.  In  the
structure of the table it is apparent that the PC is not used to index
the RU table, it is instead used for some associative searches in
the PT table and in some cases, as we will see soon, it is updated
into the LDPC field. We will now explain the implementation of
the  pre-computed  branch  algorithm  by  demonstrating  how  the
algorithm  handles  branch  instructions  and  non-branch
instructions.

3.1.1 Branch Instructions



Figure 1a details the logic required to handle branch instructions
with the RU and PT tables. We will first explain what happens
when a branch is encountered for the first time and then explain
what happens when it is encountered again. When any branch is
encountered the PT table is searched for hit  on TAG, PC1 and
PC2 fields, if the branch is encountered for the first time it will
not exist in the PT. The first issue of every branch in the program
is always predicted to be not-taken. After execution, if the branch
was not-taken then nothing is done, but if it was taken then its
TAG, OPC, OP1 and OP2 are placed into the PT table. The PC1
and PC2 values are filled by the LDPC of the operands from the
RU  table,  and  lastly,  the  LRU  field  is  updated  appropriately.
When the branch instruction is issued again, the PT is searched
for a hit on TAG, PC1 and PC2. Each time a hit occurs and the
branch outcome is available from the PRED field, this outcome is
100% accurate. 

3.1.2 Non-Branch Instructions
The  logic  for  when  a  non-branch  instruction  is  encountered  is
different from that of a branch instruction, as seen in Figure 1b.
Every non-branch instruction that writes something into a register
triggers a search into the PT table for a hit with PC1 or PC2. But,
if the RC of those registers is 0, then the PT table is not searched
since there will  be no branches in it  that use the register as an
operand. If the RC is greater than 0, then PT table is searched for
a hit on PC1 or PC2 field. If a hit is obtained then the updated
operand value from RU is obtained and a supplementary branch
execution is performed, the obtained result (taken or not-taken) is
updated into the PRED field. 
From  the  above  description  of  the  implementation  of  pre-
computed branches, it is obvious that the only mispredictions that
occur by using our algorithm, are when branches are encountered
for  the  first  time  (compulsory  misses)  and  when  branches  are
replaced due to the limited size of the PT table (capacity misses). 

4.  IMPLEMENTATION IN SIMPLESCALAR
Our  purpose  is  to  enable  sim-func  to  count  the  number  of
instructions between when the last register needed to compute the
branch  was  written,  and  when  the  branch  was  executed.  This
result would be the ideal theoretical number of instructions before
a  branch,  that  its  outcome  was  available.  For  sim-DLX,  we
needed to hack it to enable pre-computed branch functionality and
then also needed to hack it to count the number of instructions in
advance  a  branch  outcome  is  actually  available.  This  number
would  be  the  actual  value  as  opposed  to  the  theoretical  value

calculated  through  sim-func. We  then  compare  the  theoretical
value and the actual  value and also compare the results  of  the
traditional branch algorithms with pre-computed branches in sim-
DLX.

4.1 Sim-func
In  sim-func,  we  first  check  to  make  sure  that  both  the  input
registers  are  not  empty.   After  that  we compare the two input
register's  PCs  and  use  the  most  recent  instruction number  to
update  the  number  of  instructions  before  the  branch  that  the
operand was available.  If  we are writing  the registers,  then we
update the time the register was last written.
Then  we  make  the  following  output  via  print_counter  when
execution of a benchmark has completed:

branch_vars_avail :  displays how many instructions are branches 
  and how many are non-branches that change 
  the branch instructions operands

branch_insn           :  the total number of branch instructions
branch_vars_avail  :  the number of instructions a branch outcome

 is  available  before  the  actual  branch  is   
   encountered

4.2 Sim-DLX
In sim-DLX, we first implemented the above code from sim-func
to calculate the actual number of instructions before a branch that
its outcome was available. As is mentioned in the section on Pre-
computed branches, we needed to implement the RU and the PT
tables in sim-DLX to enable pre-computed branch functionality.
We created the RU and the PT structures in machine.h. The RU
has the same number of entries as the register file and is an array.
RU[1]  is  the  same as  Register[1]  and  so  on.  The  RU holds  a
reference count, which counts how many entries in the prediction
table reference a particular register.  This is used so that when a
register is written, it can be astute about recomputing branches (If
there's  no  reference  count,  don't  recompute).  The  RU  also
contains a LDPC field, which contains the PC that last wrote the
register. This is used so that the prediction table can determine if
the same situation exists when recomputing a branch. For the PT
table, we create a structure that contains nOP1 and nOP2 which
are the register numbers that are the inputs to the branch. i.e. bne
r1,  r2,  pc  (nOP1=1,  nOP2=2).  It  also  contains  PC1  and  PC2,
which were the last PCs of the instructions that wrote the above
registers before the branch was executed. (In other words, the PCs
that generated the values used to compute the branch.)  The PT
also  contains  the  OPC (opcode  of  the  branch),  the  prediction,
LRU (for determining which entry to kick out when full) and a
tag (the PC of the branch for matching later). 
We use these two structures in sim-DLX, and set the size of the
RU to the size of the register table (MD_TOTAL_REGS) and the
size of the PT table to 256 entries. The following prototypes are
added for the PT table-
int find_pt_entry(void);
int free_pt_entry( void );
void add_pt_entry(md_addr_t addr, struct predec_insn_t *pdi);
void update_pt_table();
Then in sim-DLX we zero out the reference count on all registers
in the RU table and also zero out the registers, LRU and tag info
in the PT table. We then set the branch predictor option to none.
And then enable the statistics of the pre-computed branches to be
displayed at the end of the simulation along with other results.
We choose to display: 
sim_sample_pcb_computed, 
sim_sample_pcb_misses, 
sim_sample_pcb_hits, 
sim_sample_pcb_hitrate.
to compare the obtained  results with the other branch prediction
algorithms and then to  analyze them. Then, we implemented the
actual  pre-computed  branch  algorithm  in  sim-DLX  as  was
explained  in  section  3.  Since,  the  algorithm  has  already  been
explained in detail we only present the flow, in pseudo-code, that
explains what we did: 

if (instruction is a branch)
check the prediction table using the PC
if (found an entry)

update LRU 
return correct prediction



else
guess branch not taken

if (branch taken)
add new pt entry for this pc

else
if (output register is valid)

ru[register].ldpc = pc
if (ru[register]rc &gt; 0)

update pt table for register

find entry - compare tags of current pc (of the branch)
if the tags match, and the last written PCs of the registers match
return the index
add new pt entry

get an available entry
copy the PC to tag, opcode to OPC, register numbers to
nop1, nop2
copy the LDPC for registers to pc1, pc2
set LRU
set PRED to true

update pt table
find all entries where nop1 or nop1 = written register
recompute those branches

5.  EXPERIMENTAL RESULTS
We had to make decisions about which parameters to use for our
modified sim-func and sim-DLX. For sampling we decided to use
the following parameters:
-insn:sample:first 40000000:0:10000000
-insn:sample 490000000:0:10000000
The  above  numbers  were not  chosen for  any particular  reason,
just to make sure that the simulations would not take as long as
they would without sampling. They were used consistently across
all simulations.
We had decided to run sim-func and sim-DLX on the six integer
benchmarks  because  they  are  less  loop  intensive  and  more
procedure  intensive  than  the  floating  point  benchmarks.
Therefore,  they  are  more  prone  to  being  mispredicted  than
floating point benchmarks. Thus we believed that  they would test
the  performance  of  a  branch  prediction  algorithm  more
accurately.

5.1 Theoretical Implementation
We  ran  our  modified  sim-func  using  the  above  sampling
arguments on each of the integer benchmarks. The following are
the results we obtained:

          Table 1

The results  we got  are the theoretical number  of  instructions a
branch  outcome  is  available  before  the  branch  is  encountered.
These  are  the  number  of  instructions  the  outcome  is  available
before  the  pre-computed  branch  algorithm is  implemented  and
before  latency is  brought  into  the  picture.  Therefore,  when  we
graph these results with the results obtained from sim-DLX, we
will  be able to  see how much the actual implementation varies
from the theoretical one.

5.2 Actual Implementation
To  simulate  the  branch  prediction  algorithms  (other  than  pre-
computed  branches)  we  have  to  use  the  unmodified  sim-DLX
since  in  our  hacked  version  of  sim-DLX  we  set  all  branch
prediction  algorithms  to  none.  The  following  are  the  cache
parameters  we  used  in  our  sim-DLX  simulations  of  one  bit
counter,  two  bit  counters,  two  level  predictor  and  hybrid
predictor.  They  are  held  constant  through  all  the  six  integer
benchmarks.    
The configuration of the caches used here are: 16KB, 32B line, 2-
way set-associative L1 data cache with LRU and 16KB, 32B line,
2-way set-associative L1 instruction cache with LRU. The TLB
data  and  instruction  cache  are  both  32-entry,  2-way  set-
associative, 4K page with LRU replacement policy. The L2 cache
is 512KB, has 64B lines and is 4-way set-associative with LRU.
L2 has hit latency of 10 cycles and TLB has miss latency of 10
cycles.
We  have  used  the  following  branch  prediction  methods  to
compare with the pre-computed branch results-  one bit  counter,
two bit  counters,  two level  predictor  and hybrid  predictor.  We
now detail  the  processor  configuration  used  in  each  case.  The
cache configuration mentioned above is common to all the cases.

One bit counter-  A BHT with 1024 entries and a 1-bit predictor is
used to predict branches.

Two bit counter- A 2 bit BHT with 1024 entries is used. 

2-level predictor- We use a BHR with 2 bits of branch history and
1024 entries XORed with the PC. We also use a 2 bit BHT with
1024 entries.

hybrid  predictor-  We  used  a  hybrid  of  the  2-level  predictor
mentioned previously and a chooser with 1024 entries and a 2 bit
predictor.

pre-computed  branches-  We  used  our  modified  sim-DLX  and
passed each of the integer benchmarks one after the other using
only the sample parameters mentioned at the start of this section.

After  obtaining  results  for  each  of  the  six  benchmarks,  we
tabulated  the  hit  rates  and  the  IPCs  of  the  above  mentioned
prediction methods to analyze the performance of pre-computed
branches against  the  popular  branch prediction  algorithms.  The
following tables display our obtained results:

                    Simfunc

Benchmarks   # of instructions

gcc.eio 171

bzip2.eio 58773

crafty.eio 1249

eon.kajiya.eio 8382

twolf.eio 30

vpr.route.eio 322



Table 2

          Table 3

The  above  tables  enable  us  to  effectively  compare  the  branch
prediction algorithms, which we do in the proceeding section. 

When we run the benchmarks on the modified sim-DLX we also
get  the number  of  instructions  the branch outcome is  available
before the branch is encountered on the screen along with the hit
rate and the IPC. We tabulate this data in the following table for
comparison with table 1.

Table 4

6.  ANALYSIS OF RESULTS
Using our modified sim-func, we calculated the average number
of instructions before branch execution that we knew its outcome.
But this is only the theoretical maximum - the actual number of
instructions  before  execution  that  the  outcome  was  known
through  our  pre-computed  branch  method,  implemented  in  a
modified sim-DLX, is less than the theoretical maximum as seen
in Figure 2. This can be explained by the latency that occurs when
using the pre-computed branch algorithm.  Our results show that
we can still obtain the branch's outcome far enough in advance
that we can still achieve some performance improvement.
The latency is due to the time spent searching through the pre-
computed  branch  structures.   When  a  branch  instruction  is
encountered, we must access the entire PT table and an extended
register  table  (RU),  searching  for  a  match  for  the  tag  of  that
branch.  Also, if a capacity miss is encountered, that means we
must take the time to fill up the prediction table with the branch's
tag, OPC, OP1 and OP2 , this results in higher latency.
Using  pre-computed  branches,  the  hit  rate  obtained  was  more
when  compared  with  the  hit  rates  of  other  mainstream branch
prediction methods as evident in Figure 3.  On average, the hit
rate  obtained  from pre-computed  branches  was  slightly  higher
than the hybrid prediction algorithm, but when compared to the 1-
bit counter, 2-bit counter, or 2-level methods, the difference was
significant.  The increase in hit rate in our pre-computed branch
method can be explained because our only branch mispredictions
come from capacity or compulsory misses.  If we were using a
prediction table larger than 256 entries, the capacity misses would
decrease  significantly.  However,  this  could  introduce  a  higher
latency, so some compromise between the two would have to be
reached.
There were some small discrepancies in hit rate when applied to
certain  benchmarks.   For  example,  our  hit  rate  for  the  bzip
benchmark  was  actually  the  lowest  out  of  all  the  branch
prediction methods.  This anomaly may be explained due to the
fact that the pre-computed branch algorithm is only able to predict
conditional,  unconditional,  and  procedural  branches,  where  the
branch  destination  is  explicitly  specified.   The  only  remaining
branch  type  requiring  a  predicted  target  address  for  the  pre-
computed branches is an indirect jump where the destination may
be  specified  by  values  computed  during  execution.   When  an
indirect branch is encountered, no branch prediction of any kind
is  being  used,  thus  decreasing  the  hit  rate  proportional  to  the
amount  of  indirect  branches  encountered.   However,  we  could
accommodate this  by  using  a  very  small  branch  target  buffer,
dedicated to predicting only the outcome of indirect jumps [7].
The performance might also have been lower due to the presence
of Producer Instruction Delay Slots (PIDS). These slots deal with
the  minimum  number  of  cycles  that  should  separate  the
instruction that modify the operands of a branch and the actual
branch.  If the operand modifying instruction is too close to the
corresponding  branch  then  the branch  would  have to  postpone
processing for a few cycles, till the operand modifying instruction
is  finished.  But,  a  BTB  could  be  used  to  handle  operand
modifying instructions that are in the PIDS, this would result in
no  cycles  being  lost  due  to  the  branch  having  to  wait  for  an
operand to be ready. Thus, the performance loss that had occurred
due to the presence of PIDS can be rectified by introducing BTBs.
Whenever  an  algorithm  is  able  to  reduce  the  amount  of
mispredictions  that  occur,  the  IPC  invariably  increases.  This
occurs  because  less  cycles  are  wasted  recovering  from  an

SimDLX

Benchmarks   # of instructions

gcc.eio 20

bzip2.eio 81571

crafty.eio 88

eon.kajiya.eio 25
twolf.eio 2
vpr.route.eio 28

SimDLX
Hit rate

Benchmarks 1 bit counter 2 bit counter 2 level Hybrid  PCB

gcc.eio 0.8512 0.8830 0.8400 0.9073 0.8677

bzip2.eio 0.9555 0.9687 0.9669 0.9745 0.9483

crafty.eio 0.8152 0.8613 0.8465 0.9019 0.9269

eon.kajiya.eio 0.7838 0.8481 0.9172 0.9379 0.9070

twolf.eio 0.7467 0.8125 0.7957 0.8537 0.9581

vpr.route.eio 0.9065 0.9247 0.9433 0.9464 0.9472

Average 0.84 0.88 0.88 0.92 0.93

SimDLX
IPC

Benchmarks 1 bit counter 2 bit counter 2 level Hybrid  PCB

gcc.eio 0.7182 0.7212 0.7174 0.7235 0.8557

bzip2.eio 0.9454 0.8469 0.8467 0.8473 0.9587

crafty.eio 0.8121 0.8149 0.8139 0.8183 0.9454

eon.kajiya.eio 0.8069 0.8090 0.8193 0.8207 0.9330

twolf.eio 0.8019 0.8037 0.8054 0.8084 0.9216

vpr.route.eio 0.8367 0.8367 0.8388 0.8391 0.9445

Average 0.82 0.81 0.81 0.81 0.93



incorrect prediction.   Therefore, since our  pre-computed branch
algorithm reduces the number of branch mispredictions, not only
is the hit rate increased, but the IPC is also improved.   This is
apparent  in  figure  4,  where  the  IPC  of  our  algorithm  is
consistently much higher than the IPC for every other algorithm,
for each benchmark.

7. COST EVALUATION
To  completely  analyze  the  benefits  of  using  the  pre-computed
branch algorithm over the other algorithms, we have to analyze
the prediction accuracy in the form of hit  or miss rates and we
also  have  to  judge  costs  in  the  form  of  hardware  costs  and
architectural  complexity.  Results  also  show  that  the  pre-
computed-  Branch  architecture  performs  better  than  an
architecture  using  only  a  BTB,  and  has  significant  hardware
savings.  This  is  particularly  true  for  larger  programs  more
representative of modern applications [7].
If the PT table is large, then only a small number of branches will
be evacuated by the LRU algorithm, but the trade-off is that the
latency required to go through the PT table will be high. If the
table is small, then there is a high probability for a branch that
might be encountered soon to be evacuated and the trade-off will
be that latency will be low.
By using the pre-computed branch algorithm we can reduce the
misprediction  rate,  which  saves  both  the  time  and  power
necessary  to  flush  the  pipeline  when  recovering  from  a
misprediction. This translates into lower power consumption than
the  other  branch  prediction  algorithms,  since  they  mispredict
more often. As more and more processors are being incorporated
in mobile devices like laptops, there is an ever-increasing need for
effective  power  consumption  without  losing  performance.  The
use of the pre-computed branch method can meet that need well.

8. CONCLUSION
After a careful analysis of the results, we can conclude that pre-
computed  branches  outperform  the  existing  branch  prediction
methods by resulting in a higher hit rate and higher IPC.  We also
demonstrated the latency that  occurs by the introduction  of the
prediction  table  and  the  extension  of  the  register  file;  this  is
apparent  from the difference between the theoretical and actual
results.  When using pre-computed branches, an important  trade
off exists - the size of the prediction table versus latency.    We
have also noticed that not using BTBs to handle indirect branches
and  PIDS  can  prevent  us  from achieving  higher  performance.
There  are  also  other  benefits  to  using  pre-computed  branches,
such as power consumption and hardware cost.
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Figure 4
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