
Efficiency of Pre-Computed Branches

Mohammed Aamer, Kevin Lux, Ravi Mistry, Brian Mulholland
aamer@seas.upenn.edu, luxk@saul.cis.upenn.edu, ravimist@seas.upenn.edu, mulholla@seas.upenn.edu

Dept. Of Computer Science
University of Pennsylvania

3330 Walnut Street
Philadelphia, PA 19104

ABSTRACT
In this paper we discuss an alternative to the existing branch
prediction algorithms, called pre-computed branch prediction.
This method does not actually involve prediction, as the branch's
outcome is calculated as soon as its last operand is known. We
attempted to validate the claim that pre-computed branches give a
higher rate of performance than the existing branch prediction
methods, by implementing the pre-computed branch algorithm in
SimpleScalar. After analyzing our data, we concluded that one
does get a higher hit rate and IPC if pre-computed branches are
used, which results in increased performance.

1. INTRODUCTION
Branching is a big problem in computer architecture, especially
with modern processors that run at such high clock speeds and
contain increasingly deeper pipelines. Branches interrupt the
control flow of a processor, which can then decrease performance
significantly if that branch is not handled correctly. There are
numerous methods used today to try and minimize this negative
effect on performance. We designed this project after reading a
paper that discusses one approach to solving this problem, called
"An Alternative to Branch Prediction: Pre-Computed
Branches"[6]. Pre-Computed Branch Prediction uses dedicated
hardware to keep track of the locations of branches and their
operands. Then whenever that branch is encountered again, the
pre-computed branch hardware can figure out its outcome as soon
as its arguments are computed. This means that except for the
very first time a branch is encountered, and except for structural
hazards due to the prediction table size, the processor can know
with 100% certainty whether the branch is taken and what the
target of the branch is.
To investigate the ideas of their paper, we first modified the
SimpleScalar sim-func simulator to see what kind of speedup we
could expect from implementing the pre-computed branch
architecture. We then emulated the pre-computed branch
architecture in the SimpleScalar sim-DLX simulator to see if our
actual results matched our expected results. Lastly, we ran the six
integer benchmarks with pre-computed branches and compared
the results to those obtained by using the traditional branch
prediction algorithms.

2. BACKGROUND
In most programs, between 10 to 20% of the instructions are
branches. There are methods that we can use to try and predict
whether a branch is taken, but ultimately they are just guesses,
which have to guess incorrectly a portion of the time. If the

processor predicts incorrectly, but it has already begun to execute
instructions from the incorrect branch, then it is forced to flush all
of the wrongly-predicted instructions after the branch and start
over. This results in a big loss of performance. And it's not
enough to simply predict whether a branch is taken or not - we
must also be able to figure out the value of the new PC, or else we
will have to stall. Therefore, good branch handling methods are
essential if we are going to get the most out of a processor.
There are many methods used in modern processors to try and
avoid the potential performance hit caused by branches. If no
tricks were used at all, we would have to wait until the end of the
execution stage of the pipeline every time a branch instruction
was encountered, to know exactly what instruction to fetch next.
Assuming that 15% of the instructions are branches, and the
execution stage was the third stage of the pipeline, this could
cause a 30% increase in the CPI of a processor.

2.1 Branch Prediction Methods
Speculative execution is used to try and avoid these control stalls.
With speculative execution, the processor guesses whether or not
the branch is taken, and if so what its target is. Once the
processor figures out this information, it can begin executing at
that point immediately. Later on, when the result of the branch is
actually known, the processor can see whether its guess was
correct or not. If the guess was correct, the processor can
continue to execute. But if the guess was incorrect, the processor
must now flush its pipeline of all the incorrect instructions it has
been executing, as well as undo any incorrect changes that were
made.
Branch prediction is the method used to "guess" whether or not a
branch is taken. There are two kinds of branch prediction, static
and dynamic. Static branch prediction schemes always do the
same thing: always predict taken, always predict not taken,
always predict certain opcodes taken, etc. Always predicting
taken isn't a terrible idea, because about 65% of branches are
taken - but this still means a 35% misprediction rate. Dynamic
branch prediction, on the other hand, uses special hardware to
determine whether a branch is taken.
One kind of dynamic branch prediction is a Branch History Table
(BHT). The BHT is a 1-bit wide table that is indexed by the least
significant bits of a branch PC. When a branch is encountered,
the BHT is checked to see whether that branch was taken or not
taken the previous time it was encountered. If there is a
misprediction, the BHT is updated. However, multiple PCs may
map to the same BHT entry, and in addition it will mispredict
every time the branch outcome switches. To improve on this
model, two-bit saturating counters were introduced. The two-bit

counters perform better on average because they must mispredict
twice in order to change their prediction. Correlating predictors
are another dynamic branch prediction method. Correlating
branch predictors base their predictions on the outcomes of
branches that occurred recently in the program, because there is
often some correlation between the current branch and the
previous few branches. Hybrid predictors have multiple
predictors, each using a different predictor scheme. There is a
"chooser" which selects which scheme to use for each branch. If
the chosen predictor is wrong for a given branch, the chooser is
flipped for that branch and the other scheme is used until the next
misprediction.
Predicting whether or not a branch is taken is just one aspect of
speculative execution - you also need to know what the target PC
is. A branch target buffer (BTB) is used to keep track of previous
branches and their targets. When an instruction is fetched, its
address is used as an index into the BTB table. If there is a
match, we know that the instruction is a branch. If that branch is
predicted as taken, then the branch destination is obtained from
the BTB, and the processor begins to fetch and execute at that
new instruction. Certain BTBs not only store the destination
address, but also store the entire instruction at that address. This
is called a Branch Target Cache (BTC). However, BTBs and
BTCs can be rather large, and therefore expensive to implement -
in terms of both money and chip space.

2.2 Need for a More Efficient Algorithm
Moore's Law states that the number of transistors on CPUs
doubles about every 18 months which eventually translates to
double the performance in approximately every two years [8]. To
keep up with the Moore’s law we would need more efficient
branch prediction techniques.
Modern processors use pipelining to exploit parallelism and
improve performance. Conditional branches in the instruction
stream decrease performance by causing pipeline flushes in case
of mis-prediction. Efficient branch prediction mechanisms can
overcome this limitation by predicting the outcome of the branch
before its condition is resolved. As a result, instruction fetch is
not interrupted as often and the window of instructions over
which instruction level parallelism can be used increases. In fact,
accurate branch predictors can eliminate most of these pipeline
stalls and are thus critical to realizing the performance potential of
a processor.
As the design trends of modern superscalar microprocessors move
toward wider issue and deeper super-pipelines, effective branch
prediction becomes essential to exploring the full performance of
microprocessors. Processors with a simple five-stage pipeline
typically have a two-cycle branch penalty. For a four-way
superscalar design, however, this could mean a loss of eight
instructions. If the pipeline is extended, the branch penalty
usually increases, resulting in the loss of even more instructions.
Since programs typically encounter branches every 4–6
instructions, inaccurate branch prediction causes severe
performance degradation in highly superscalar or deeply
pipelined designs. Improving branch prediction accuracy by using
new more efficient algorithms is important for reducing these
larger mis-prediction penalties.
To increase the branch prediction accuracy different branch
prediction techniques have been developed as mentioned above.
These branch prediction schemes can achieve average prediction
accuracy in the range of 80-95% depending on the type of
prediction and the program being executed. Although it must
signify a good branch prediction performance, there is a growing

need for new techniques that can be used to improve it even
further, in order to stay with new advances being made in the
field of pipelining. One of the effective techniques that can be
used in this regard is pre-computed branch algorithm.

3. PRE-COMPUTED BRANCHES
As we have seen, there is a need to develop a branch prediction
algorithm that outperforms today’s traditional branch prediction
algorithms like two bit counters, two-level adaptive branch
predictors [1,2,3,4] and hybrid/tournament predictors [5]. This
paper will demonstrate an algorithm that is an alternative to the
traditional prediction algorithms. In this paper we detail and
implement the pre-computed branch prediction algorithm
described in [6]. Instead of predicting the branch outcome, a pre-
calculated branch prediction (PCB) determines the outcome of the
branch as soon as all the operands of the branch instruction are
known. This outcome is then cached in to a ‘prediction’ table
(PT). The main idea of the pre-calculated branch algorithm is that
each branch, when first encountered, inflicts a capacity miss; then
this branch is cached into the prediction table, the result of any
subsequent non-branch instruction that modifies any operand of a
cached branch instruction is stored in an extension of the register
table called the ‘register unit’ table (RU). The outcome of the
branch is then recalculated and cached back into the PT. Through
this algorithm, except for the first time and except for capacity
misses due to the size of the prediction table, every branch will be
predicted with 100% accuracy.

3.1 Implementation Methodology
Two tables are required to implement pre-computed branches- the
‘register unit’ table (RU) and the ‘prediction’ table (PT). The
RU table is an extension of the register file. The RU maintains the
register file meanings, but in addition to the register file, each
entry in the RU also has two new fields named LDPC and RC.
The RC field is a reference counter that gets incremented by one
whenever an instruction, whose label is in the PC1 or PC2 field of
the PT, writes into the attached register. Whenever a branch
instruction is evicted from the PT table, the RC field of its
corresponding operates are decremented by one. Therefore, if a
register has a RC field of 0 then it would mean that there is no
branch instruction in the PT table that uses that particular register
as an operand. The RU table and the PT table can be seen in
Figure 1(a and b).
The PT table stores the pointers to the last branch’s operand
producers (PC1 and PC2) along with the TAG of the branch. The
PT also stores the branches opcode in OPC and the register names
of the branches operands in nOP1 and nOP2 respectively. PRED
shows the path the branch will take when it is encountered next
(taken or not-taken). The LRU field is used to keep track of the
least recently used branch. The size of the PT table is an
important factor in calculating pre-computed branches. In the
structure of the table it is apparent that the PC is not used to index
the RU table, it is instead used for some associative searches in
the PT table and in some cases, as we will see soon, it is updated
into the LDPC field. We will now explain the implementation of
the pre-computed branch algorithm by demonstrating how the
algorithm handles branch instructions and non-branch
instructions.

3.1.1 Branch Instructions

Figure 1a details the logic required to handle branch instructions
with the RU and PT tables. We will first explain what happens
when a branch is encountered for the first time and then explain
what happens when it is encountered again. When any branch is
encountered the PT table is searched for hit on TAG, PC1 and
PC2 fields, if the branch is encountered for the first time it will
not exist in the PT. The first issue of every branch in the program
is always predicted to be not-taken. After execution, if the branch
was not-taken then nothing is done, but if it was taken then its
TAG, OPC, OP1 and OP2 are placed into the PT table. The PC1
and PC2 values are filled by the LDPC of the operands from the
RU table, and lastly, the LRU field is updated appropriately.
When the branch instruction is issued again, the PT is searched
for a hit on TAG, PC1 and PC2. Each time a hit occurs and the
branch outcome is available from the PRED field, this outcome is
100% accurate.

3.1.2 Non-Branch Instructions
The logic for when a non-branch instruction is encountered is
different from that of a branch instruction, as seen in Figure 1b.
Every non-branch instruction that writes something into a register
triggers a search into the PT table for a hit with PC1 or PC2. But,
if the RC of those registers is 0, then the PT table is not searched
since there will be no branches in it that use the register as an
operand. If the RC is greater than 0, then PT table is searched for
a hit on PC1 or PC2 field. If a hit is obtained then the updated
operand value from RU is obtained and a supplementary branch
execution is performed, the obtained result (taken or not-taken) is
updated into the PRED field.
From the above description of the implementation of pre-
computed branches, it is obvious that the only mispredictions that
occur by using our algorithm, are when branches are encountered
for the first time (compulsory misses) and when branches are
replaced due to the limited size of the PT table (capacity misses).

4. IMPLEMENTATION IN SIMPLESCALAR
Our purpose is to enable sim-func to count the number of
instructions between when the last register needed to compute the
branch was written, and when the branch was executed. This
result would be the ideal theoretical number of instructions before
a branch, that its outcome was available. For sim-DLX, we
needed to hack it to enable pre-computed branch functionality and
then also needed to hack it to count the number of instructions in
advance a branch outcome is actually available. This number
would be the actual value as opposed to the theoretical value

calculated through sim-func. We then compare the theoretical
value and the actual value and also compare the results of the
traditional branch algorithms with pre-computed branches in sim-
DLX.

4.1 Sim-func
In sim-func, we first check to make sure that both the input
registers are not empty. After that we compare the two input
register's PCs and use the most recent instruction number to
update the number of instructions before the branch that the
operand was available. If we are writing the registers, then we
update the time the register was last written.
Then we make the following output via print_counter when
execution of a benchmark has completed:

branch_vars_avail : displays how many instructions are branches
 and how many are non-branches that change
 the branch instructions operands

branch_insn : the total number of branch instructions
branch_vars_avail : the number of instructions a branch outcome

 is available before the actual branch is
 encountered

4.2 Sim-DLX
In sim-DLX, we first implemented the above code from sim-func
to calculate the actual number of instructions before a branch that
its outcome was available. As is mentioned in the section on Pre-
computed branches, we needed to implement the RU and the PT
tables in sim-DLX to enable pre-computed branch functionality.
We created the RU and the PT structures in machine.h. The RU
has the same number of entries as the register file and is an array.
RU[1] is the same as Register[1] and so on. The RU holds a
reference count, which counts how many entries in the prediction
table reference a particular register. This is used so that when a
register is written, it can be astute about recomputing branches (If
there's no reference count, don't recompute). The RU also
contains a LDPC field, which contains the PC that last wrote the
register. This is used so that the prediction table can determine if
the same situation exists when recomputing a branch. For the PT
table, we create a structure that contains nOP1 and nOP2 which
are the register numbers that are the inputs to the branch. i.e. bne
r1, r2, pc (nOP1=1, nOP2=2). It also contains PC1 and PC2,
which were the last PCs of the instructions that wrote the above
registers before the branch was executed. (In other words, the PCs
that generated the values used to compute the branch.) The PT
also contains the OPC (opcode of the branch), the prediction,
LRU (for determining which entry to kick out when full) and a
tag (the PC of the branch for matching later).
We use these two structures in sim-DLX, and set the size of the
RU to the size of the register table (MD_TOTAL_REGS) and the
size of the PT table to 256 entries. The following prototypes are
added for the PT table-
int find_pt_entry(void);
int free_pt_entry(void);
void add_pt_entry(md_addr_t addr, struct predec_insn_t *pdi);
void update_pt_table();
Then in sim-DLX we zero out the reference count on all registers
in the RU table and also zero out the registers, LRU and tag info
in the PT table. We then set the branch predictor option to none.
And then enable the statistics of the pre-computed branches to be
displayed at the end of the simulation along with other results.
We choose to display:
sim_sample_pcb_computed,
sim_sample_pcb_misses,
sim_sample_pcb_hits,
sim_sample_pcb_hitrate.
to compare the obtained results with the other branch prediction
algorithms and then to analyze them. Then, we implemented the
actual pre-computed branch algorithm in sim-DLX as was
explained in section 3. Since, the algorithm has already been
explained in detail we only present the flow, in pseudo-code, that
explains what we did:

if (instruction is a branch)
check the prediction table using the PC
if (found an entry)

update LRU
return correct prediction

else
guess branch not taken

if (branch taken)
add new pt entry for this pc

else
if (output register is valid)

ru[register].ldpc = pc
if (ru[register]rc > 0)

update pt table for register

find entry - compare tags of current pc (of the branch)
if the tags match, and the last written PCs of the registers match
return the index
add new pt entry

get an available entry
copy the PC to tag, opcode to OPC, register numbers to
nop1, nop2
copy the LDPC for registers to pc1, pc2
set LRU
set PRED to true

update pt table
find all entries where nop1 or nop1 = written register
recompute those branches

5. EXPERIMENTAL RESULTS
We had to make decisions about which parameters to use for our
modified sim-func and sim-DLX. For sampling we decided to use
the following parameters:
-insn:sample:first 40000000:0:10000000
-insn:sample 490000000:0:10000000
The above numbers were not chosen for any particular reason,
just to make sure that the simulations would not take as long as
they would without sampling. They were used consistently across
all simulations.
We had decided to run sim-func and sim-DLX on the six integer
benchmarks because they are less loop intensive and more
procedure intensive than the floating point benchmarks.
Therefore, they are more prone to being mispredicted than
floating point benchmarks. Thus we believed that they would test
the performance of a branch prediction algorithm more
accurately.

5.1 Theoretical Implementation
We ran our modified sim-func using the above sampling
arguments on each of the integer benchmarks. The following are
the results we obtained:

 Table 1

The results we got are the theoretical number of instructions a
branch outcome is available before the branch is encountered.
These are the number of instructions the outcome is available
before the pre-computed branch algorithm is implemented and
before latency is brought into the picture. Therefore, when we
graph these results with the results obtained from sim-DLX, we
will be able to see how much the actual implementation varies
from the theoretical one.

5.2 Actual Implementation
To simulate the branch prediction algorithms (other than pre-
computed branches) we have to use the unmodified sim-DLX
since in our hacked version of sim-DLX we set all branch
prediction algorithms to none. The following are the cache
parameters we used in our sim-DLX simulations of one bit
counter, two bit counters, two level predictor and hybrid
predictor. They are held constant through all the six integer
benchmarks.
The configuration of the caches used here are: 16KB, 32B line, 2-
way set-associative L1 data cache with LRU and 16KB, 32B line,
2-way set-associative L1 instruction cache with LRU. The TLB
data and instruction cache are both 32-entry, 2-way set-
associative, 4K page with LRU replacement policy. The L2 cache
is 512KB, has 64B lines and is 4-way set-associative with LRU.
L2 has hit latency of 10 cycles and TLB has miss latency of 10
cycles.
We have used the following branch prediction methods to
compare with the pre-computed branch results- one bit counter,
two bit counters, two level predictor and hybrid predictor. We
now detail the processor configuration used in each case. The
cache configuration mentioned above is common to all the cases.

One bit counter- A BHT with 1024 entries and a 1-bit predictor is
used to predict branches.

Two bit counter- A 2 bit BHT with 1024 entries is used.

2-level predictor- We use a BHR with 2 bits of branch history and
1024 entries XORed with the PC. We also use a 2 bit BHT with
1024 entries.

hybrid predictor- We used a hybrid of the 2-level predictor
mentioned previously and a chooser with 1024 entries and a 2 bit
predictor.

pre-computed branches- We used our modified sim-DLX and
passed each of the integer benchmarks one after the other using
only the sample parameters mentioned at the start of this section.

After obtaining results for each of the six benchmarks, we
tabulated the hit rates and the IPCs of the above mentioned
prediction methods to analyze the performance of pre-computed
branches against the popular branch prediction algorithms. The
following tables display our obtained results:

 Simfunc

Benchmarks # of instructions

gcc.eio 171

bzip2.eio 58773

crafty.eio 1249

eon.kajiya.eio 8382

twolf.eio 30

vpr.route.eio 322

Table 2

 Table 3

The above tables enable us to effectively compare the branch
prediction algorithms, which we do in the proceeding section.

When we run the benchmarks on the modified sim-DLX we also
get the number of instructions the branch outcome is available
before the branch is encountered on the screen along with the hit
rate and the IPC. We tabulate this data in the following table for
comparison with table 1.

Table 4

6. ANALYSIS OF RESULTS
Using our modified sim-func, we calculated the average number
of instructions before branch execution that we knew its outcome.
But this is only the theoretical maximum - the actual number of
instructions before execution that the outcome was known
through our pre-computed branch method, implemented in a
modified sim-DLX, is less than the theoretical maximum as seen
in Figure 2. This can be explained by the latency that occurs when
using the pre-computed branch algorithm. Our results show that
we can still obtain the branch's outcome far enough in advance
that we can still achieve some performance improvement.
The latency is due to the time spent searching through the pre-
computed branch structures. When a branch instruction is
encountered, we must access the entire PT table and an extended
register table (RU), searching for a match for the tag of that
branch. Also, if a capacity miss is encountered, that means we
must take the time to fill up the prediction table with the branch's
tag, OPC, OP1 and OP2 , this results in higher latency.
Using pre-computed branches, the hit rate obtained was more
when compared with the hit rates of other mainstream branch
prediction methods as evident in Figure 3. On average, the hit
rate obtained from pre-computed branches was slightly higher
than the hybrid prediction algorithm, but when compared to the 1-
bit counter, 2-bit counter, or 2-level methods, the difference was
significant. The increase in hit rate in our pre-computed branch
method can be explained because our only branch mispredictions
come from capacity or compulsory misses. If we were using a
prediction table larger than 256 entries, the capacity misses would
decrease significantly. However, this could introduce a higher
latency, so some compromise between the two would have to be
reached.
There were some small discrepancies in hit rate when applied to
certain benchmarks. For example, our hit rate for the bzip
benchmark was actually the lowest out of all the branch
prediction methods. This anomaly may be explained due to the
fact that the pre-computed branch algorithm is only able to predict
conditional, unconditional, and procedural branches, where the
branch destination is explicitly specified. The only remaining
branch type requiring a predicted target address for the pre-
computed branches is an indirect jump where the destination may
be specified by values computed during execution. When an
indirect branch is encountered, no branch prediction of any kind
is being used, thus decreasing the hit rate proportional to the
amount of indirect branches encountered. However, we could
accommodate this by using a very small branch target buffer,
dedicated to predicting only the outcome of indirect jumps [7].
The performance might also have been lower due to the presence
of Producer Instruction Delay Slots (PIDS). These slots deal with
the minimum number of cycles that should separate the
instruction that modify the operands of a branch and the actual
branch. If the operand modifying instruction is too close to the
corresponding branch then the branch would have to postpone
processing for a few cycles, till the operand modifying instruction
is finished. But, a BTB could be used to handle operand
modifying instructions that are in the PIDS, this would result in
no cycles being lost due to the branch having to wait for an
operand to be ready. Thus, the performance loss that had occurred
due to the presence of PIDS can be rectified by introducing BTBs.
Whenever an algorithm is able to reduce the amount of
mispredictions that occur, the IPC invariably increases. This
occurs because less cycles are wasted recovering from an

SimDLX

Benchmarks # of instructions

gcc.eio 20

bzip2.eio 81571

crafty.eio 88

eon.kajiya.eio 25
twolf.eio 2
vpr.route.eio 28

SimDLX
Hit rate

Benchmarks 1 bit counter 2 bit counter 2 level Hybrid PCB

gcc.eio 0.8512 0.8830 0.8400 0.9073 0.8677

bzip2.eio 0.9555 0.9687 0.9669 0.9745 0.9483

crafty.eio 0.8152 0.8613 0.8465 0.9019 0.9269

eon.kajiya.eio 0.7838 0.8481 0.9172 0.9379 0.9070

twolf.eio 0.7467 0.8125 0.7957 0.8537 0.9581

vpr.route.eio 0.9065 0.9247 0.9433 0.9464 0.9472

Average 0.84 0.88 0.88 0.92 0.93

SimDLX
IPC

Benchmarks 1 bit counter 2 bit counter 2 level Hybrid PCB

gcc.eio 0.7182 0.7212 0.7174 0.7235 0.8557

bzip2.eio 0.9454 0.8469 0.8467 0.8473 0.9587

crafty.eio 0.8121 0.8149 0.8139 0.8183 0.9454

eon.kajiya.eio 0.8069 0.8090 0.8193 0.8207 0.9330

twolf.eio 0.8019 0.8037 0.8054 0.8084 0.9216

vpr.route.eio 0.8367 0.8367 0.8388 0.8391 0.9445

Average 0.82 0.81 0.81 0.81 0.93

incorrect prediction. Therefore, since our pre-computed branch
algorithm reduces the number of branch mispredictions, not only
is the hit rate increased, but the IPC is also improved. This is
apparent in figure 4, where the IPC of our algorithm is
consistently much higher than the IPC for every other algorithm,
for each benchmark.

7. COST EVALUATION
To completely analyze the benefits of using the pre-computed
branch algorithm over the other algorithms, we have to analyze
the prediction accuracy in the form of hit or miss rates and we
also have to judge costs in the form of hardware costs and
architectural complexity. Results also show that the pre-
computed- Branch architecture performs better than an
architecture using only a BTB, and has significant hardware
savings. This is particularly true for larger programs more
representative of modern applications [7].
If the PT table is large, then only a small number of branches will
be evacuated by the LRU algorithm, but the trade-off is that the
latency required to go through the PT table will be high. If the
table is small, then there is a high probability for a branch that
might be encountered soon to be evacuated and the trade-off will
be that latency will be low.
By using the pre-computed branch algorithm we can reduce the
misprediction rate, which saves both the time and power
necessary to flush the pipeline when recovering from a
misprediction. This translates into lower power consumption than
the other branch prediction algorithms, since they mispredict
more often. As more and more processors are being incorporated
in mobile devices like laptops, there is an ever-increasing need for
effective power consumption without losing performance. The
use of the pre-computed branch method can meet that need well.

8. CONCLUSION
After a careful analysis of the results, we can conclude that pre-
computed branches outperform the existing branch prediction
methods by resulting in a higher hit rate and higher IPC. We also
demonstrated the latency that occurs by the introduction of the
prediction table and the extension of the register file; this is
apparent from the difference between the theoretical and actual
results. When using pre-computed branches, an important trade
off exists - the size of the prediction table versus latency. We
have also noticed that not using BTBs to handle indirect branches
and PIDS can prevent us from achieving higher performance.
There are also other benefits to using pre-computed branches,
such as power consumption and hardware cost.

Acknowledgments
We would like to acknowledge Dr. Amir Roth for providing us
with invaluable advice and frequently guiding us in the right
direction.

References
[1] Tse-Yu Yeh, Yale N. Patt - A comparison of dynamic branch
predictors that use two levels of branch history, Proceedings of
the 20th annual international symposium on Computer
architecture, San Diego, California, United States

[2] T. Yeh, Y.N. Patt – Two-Level Adaptive Branch Prediction,
24th ACM / IEEE International Symposium on Microarchitecture,
November 1991.

[3] S. Sechrest, C. Lee, Mudge T. - The Role of Adaptivity in
Two-level Adaptive Branch, 28th ACM / IEEE International
Symposium on Microarchitecture, November 1995.

[4] T. Yeh, Y.N. Patt – Alternative Implementation of Tvo-Level
Adaptive Branch Prediction, 19th Annual International
Symposium on Computer Science, May 1995.

[5] Po-Ying Chang, Eric Hao, Yale N. Patt - Alternative
implementations of hybrid branch predictors, Proceedings of the
28th annual international symposium on Microarchitecture, Ann
Arbor, Michigan, United States

[6] Lucian N. Vintan, Marius Sbera, Ioan Z. Mihu, Adrian Florea
– An Alternative To Branch Prediction: Pre-Computed Branches,
ACM SIGARCH Computer Architecture News, June 2003.

[7] Brad Calder, Dirk Grunwald – The Precomputed Branch
Architecture, UCSD Technical Report, March 1997.

[8] Gordon E. Moore - Cramming more components onto
integrated circuits, Electronics (Volume 38 Number 8), April
1965.

Figure 2

Figure 3

gcc.eio bzip2.eio crafty.eio eon.ka
jiya.eio

twolf.eio vpr.route
.eio

1

10

100

1000

10000

100000

Theoretical vs. Actual

Simfunc # of instr.

SimDLX # of instr.

BenchMarks

of

 in
st

ru
ct

io
ns

 B
ef

or
e

gcc.eio bzip2.eio crafty.eio eon.ka
jiya.eio

twolf.eio vpr.route.
eio

0.7000

0.7250

0.7500

0.7750

0.8000

0.8250

0.8500

0.8750

0.9000

0.9250

0.9500

0.9750

Hit Rate Comparisons

1 bit counter

2 bit counter

2 level

Hybrid

PCB

BenchMarks

H
it

R
at

e

Figure 4

gcc.eio bzip2.ei
o

crafty.ei
o

eon.ka
jiya.eio

twolf.eio vpr.rout
e.eio

0.7000

0.7250

0.7500

0.7750

0.8000

0.8250

0.8500

0.8750

0.9000

0.9250

0.9500

0.9750

IPC Comparisons

1 bit counter

2 bit counter

2 level

Hybrid

PCB

BenchMarks

IP
C

