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Abstract. Unlike traditional superscalar processors, Simultaneous Mul-
tithreaded processor can explore both instruction level parallelism and
thread level parallelism at the same time. With a same fetch width,
SMT fetches instructions from a single thread not so deeply as in tra-
ditional superscalar processor. Meanwhile, all the instructions from dif-
ferent threads share the same Function Unites in SMT. All the charac-
teristics make it possible to enhance the performance of SMT through
reducing the branch mis-prediction. Based on the fact that about 15%
of branch instructions whose directions can be definitely known at pre-
dicting cycle, a simple and effective bypass mechanism is proposed. This
scheme doesn’t depend on any existed branch predictor, and can be used
as an effective enhancement to them. Execution-driven simulation results
show that the branch prediction miss rates of our predictor decrease by
more than 15% on average compared with a simple base line (g-share)
predictor and improve the instruction throughput by about 2.5%.

1 Introduction

Simultaneous Multithreaded processors [1, 2] increase the instruction through-
put by allowing fetching and running instructions from several threads simul-
taneously at a single cycle. In SMT processors, functional units that would be
idle due to instruction level parallelism (ILP) limitations of a single thread are
dynamically filled with useful instructions from other threads, an SMT proces-
sor can hide both long latency operations and data dependencies in one thread
effectively. These advantages increase both processor utilization and instructions
throughput.

With the pipeline deepening and issue widths increasing, the branch predictor
plays an important role in improving the performance of an SMT processor [3].
At the same time, according to Matt Ramsay et al. [4], high accuracy of branch
predictor is not always needed for a SMT processor because the SMT processors
can hide the penalty effectively. So a simple and effective predictor is more
suitable for SMT processors.

It is well known that a conditional branch instruction uses the result from
previous instructions to make a branch decision. In our experiment, we observe
that at most time the distance between the instructions that produce results and
a branch instruction which use the results is not too long. In some programs,
there are a high percentage of conditional branches whose direction decisions
can be definitely known at predicting cycle, and for these branch instructions
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the predictor should not predict wrongly, and thus the wrong path instruction
fetching should also be avoided for them. When this feature is considered in SM'T
processors, the saved fetch slots can be used to fetch more useful and correct
instructions in the threads, and improve the overall performance as a result.

In this paper, we proposed a simple and effective bypass mechanism which ex-
ploits the above feature through combining a Writing-Register-Table (WRT) and
a base line (g-share) branch predictor into together. It is easy to be implemented,
and needs less hardware than many dynamic predictors existed. Compared with
our base line, execution-driven simulation results show that the branch predic-
tion miss rates are reduced. Although we use a simple branch predictor as our
base line predictor, our scheme doesn’t depend on it, and can be used as an
effective enhancement to any existed branch predictors.

The paper is organized as follows. First, we introduce the related works about
branch predictor. Then, we study the characteristics of branch instruction and
their relied registers. and gives our proposed bypass mechanism. In the third
part, we give the simulation results and analysis, and finally we conclude our

paper.

2 Related works

Till now, many proposals for branch predictors have been put forward. Yeh and
Patt [5] show that a two-level branch predictor can achieve high levels of branch
prediction accuracy. And S. McFarling [6] proposed g-share branch predictor.
To solve the problem of branch interference, Chih-Chieh Lee et al [7], intro-
duced Bi-mode Predictor, Eric Sprangle et al. introduced the Agree Predictor
[8]. Additionally, Skewed Branch Predictor [9], the Filter Mechanism [10],YAGS
predictor [11] are also introduced in traditional superscalar processors. Moreover,
value predictors using the concept of value locality to improve branch predictor
[12, 13, 14, 15, 16] are always been use as a component of modern combined
predictor.

These years, some new methods are introduced such as Lucian N. Vin-
tan’s pre-computed branches [17] which compute the destination of conditional
branches as early as the first operand is ready for superscalar processors, Robert
S. Chappell’s Difficult-path branch prediction using subordinate micro-threads
[18], Craig Zilles’s Execution-based prediction using speculative slices [19], Daniel
A. Jimnez introduced the Neural Branch Prediction [20, 21], Renju Thomas et al
studied dynamic dataflow-based identification of correlated branches from a large
global history [22], Abhas Kumar et al. evaluated the importance of branches in
modern deep pipelined processors [23], and David Tarjan introduced the hashed
perceptron predictor, which merges the concepts behind the g-share, path-based
and perceptron branch predictors [24].

Though these methods are suitable for superscalar processors, they do not
take advantage of the characteristics of SMT processors. In this paper, we pro-
posed a simple and effective bypass scheme for SMT, which try to decrease the
wrong path instruction fetching when a branch can be predicted correctly for
sure. Our scheme outperforms traditional simple predictors and can be used with
any other traditional predictors. Although it is based on the previous work [27],
however, there is a big difference between them. Our scheme does not predict
all conditional branches; instead, those branches whose operands are not being
wrote by in flight instructions will not go through the branch predictor. And in
next section we will show this in detail.
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3 An effective bypass mechanism to improve branch
predictor

In this section we present our basic idea, and give the proposed bypass scheme
in detail.

3.1 Basic idea

Traditionally, high performance processors always employ complex predictors
and fetch deeply to find more independent instructions to increase ILP. However,
in SMT processors, as there are enough instructions can be fetched from different
threads, it is not necessary for SMT to fetch as deeply as traditional processors.
Besides, the SMT processors can hide the mis-predict penalty effectively, a simple
predictor becomes more suitable for it.

Every conditional branch relies on the operands produced by former instruc-
tions. If the relied operands have been produced before the branch using (here
we assume the operands was not changed), the branch decision can be known
or predicted correctly for sure, and thus the wrong path instruction fetching
should also be avoided for them. To know the probability of this case, we de-
velop experiment to explore the distance between the last produced operands
and the branch who use them. When the distance is long enough, we can use
them to make a correct prediction. In this paper, we focus this research on SMT
processor, the experiment shows a high percentage (15%) of branches in SMT
processors whose distances are long enough to be made a definite correct pre-
diction. Thus the saved fetch slots can be used to fetch more useful and correct
instructions in the threads, and improve the overall performance as a result.

To take advantage of this fact, we proposed a simple and effective bypass
mechanism in this section. The architecture is shown in next subsection.

3.2 Architecture of our scheme

The architecture of our scheme is shown in Figure 1. It includes three compo-
nents: a Writing Register Table (WRT), a base line predictor, and an update
engine.

The WRT Using Alpha ISA as an example, The WRT have 64 entries that
represent 64 physical registers. Each entry includes three fields: the first one is
a 9 bits counter to record the number of instructions in flight that will write the
register (here we set the maximum number in flight is 512), ”0” means there is
no instruction in flight will write the register. Whenever there is an instruction
will write register, the corresponding counter will increase by one, and when the
instruction finishes the counter decreases by one. The second field is a one-bit
dirty-or-clean field, ”1” means there are some instructions in flight that will
write new value the register. The third field is a flag which indicates the flag of
the register, that is branch on equal to, not equal to, greater than, greater than
or equal to, less than, less than or not equal to zero, and the low bits of the
register.

The Base Line Predictor The base line predictor component can be any
predictor. Here we use a simple g-share/bi-mod predictor as an example. As
an enhancement of branch predictor, our scheme must be used together with
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an existed branch predictor. When the fetch engine meets a branch instruction
whose source register is not clean (the dirty bit in WRT is set), it looks up the
base line predictor to get a branch prediction.

The Update Engine The update engine is a bypass-logic, when one instruction
is executed and its destination is a register, the result of this instruction will
update the flag field and the counter of WRT.
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Fig. 1. The scheme of our predictor

3.3 How it works?

To enhance branch predictor using our scheme, we need the detail information
(branch or non-branch instruction, source register numbers if it is branch) about
instructions. Generally, the information can be known at Decode stage. In Alpha
ev6 processor, a line predictor is used to help to determine next fetch block at
fetch stage, and is updated by a branch predictor at Decode stage if they are
disagree. If a SMT processor has similar architecture as Alpha processor, we can
get the information of instruction without problem. But if the branch predictor
is accessed in fetch stage, our scheme needs some pre-decode information from
other structure, here we propose using pre-decode Icache to provide the needed
information.

With the provided instruction details, when the SMT processor meets a
conditional branch instruction, it will look up the entry corresponding to the
destination-register in the WRT, and check if the dirty-or-clean bit is set. If it
is clean (the bit is not set), it means that this register has not been updated
by the in flight instructions. In this case, in next cycle, the Instruction Fetch
(IF) stage will fetch instructions according to the value (target address) stored
in the register. Otherwise the destination of next instruction will be decided
by the predictor which can be any traditional predictor. In this paper, we use
g-share/bi-mode predictor as an example.

If an instruction in flight needs write a new value to a register which will be
used as a referenced register by a branch in the future, the dirty-or-clean bit in
the WRT entry corresponding to the register will be set (if it is not set before)
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and the ”counter” will increase until the instruction is finished in the pipeline
and then the ”counter” decrease and if the ”counter” is 0, then the dirty-or-clean
bit will be 0.

Additionally, we does not treat mis-predict instructions particularly, that
is because, such instructions will also go through the pipeline, and when they
finish, we update our scheme just like other instructions.

In super-scalar processors, the fetch depth can be as far as 20 to be able to
find enough instruction to issue, and in such situations, there is no need to use
our scheme because few conditional instructions whose distance from its relied
registers are more than 20.

However, in SMT processors, the fetch depth in a particular running thread is
not so deep because of the paralleling running mechanism in it, so there are more
chances that conditional branches can get their operands and make decision than
in superscalar processors. And these chances give us enough space to improve
the accuracy of branch prediction and thus improve the overall performance. In
next section, we will give the experiment framework and the simulation results.

3.4 The cost of our scheme

We assume that every thread has its own such bypass structure. Each structure
needs 64*18bits and the extra bypass logic. In some architectures, the clean bit
has been implemented in many modern superscalar processors. Therefore, the
overall cost of such bypass scheme is quite little.

4 Experiment framework and simulation results

In this section, We present our experiment framework and the results.

4.1 Experiment framework

We modify the sim-safe tool of simplescalar3.0 [25] simulator to calculate the
distance between the branch instructions and the relied instructions. Firstly, we
measure the length both double-operand-branch ISA (PISA) and single-operand-
branch ISA (Alpha). Then, based on the fact that double-operand-branch ISA
and single-operand-branch have similar results, we do our further experiment on
SMTSIM [2] to test our scheme in SMT processor.

The configuration of SMTSIM is given in Table 1. According to [26], the
private simple predictors for each thread can achieve higher performance when
they have the same cost as shared predictors. In our experiment, to compare
with our predict scheme we modify the simulator to let every thread has its own
predictor. We implement our scheme in the simulator, and combine the g-share
predictor and the WRT into together.

We select some of SPEC2000 benchmarks (8 integers and 5 floats) to test
our schemes. To get the different data of the same benchmarks, we test the same
benchmark in different threads environment, for instance, we test the data of
7gzip” in 1, 2, 4, 6, 8 threads. Consequently, we know that the different clean
rate of condition-branch in the same benchmark. From the thirteen benchmarks,
we created eight two-thread, four four-thread, two six-thread and one eight-
thread work-loads randomly and the combination of these benchmarks with their
running instructions are listed in the Table 2 and Table 3. We use ref inputs for
these benchmarks and and fast forward 10 billion instructions before starting
detailed simulation.
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Table 1. Configuration of SMT processor

Parameter Value

Functional Unites 3 FP, 6 integer (including branch),
4 load/store, 2 synchronization

Pipeline 8 stages

Branch miss penalty 6 cycles

Instruction Queue 32-entry FP, 32 entry Int

Inst./Data Cache 64KB/64KB, 2-way, 64 byte

L2/L3 Cache 512KB/4MB, 2-way, 64 byte

I/D TLB, miss penalty 48/128 entry, 160 cycles
Latency (to CPU) L2 6, L3 18, Mem 80 cycles
Fetch Police ICOUNT.2.8 [2]
Fetch/Rename/Issue/ 8 instructions/cycle
Commit Width

Table 2. Information of Individual benchmarks

Order Benchmarks NumberofInstructionsinmillion Numberof Branchesinmillion

1 Mgrid 281 0.05
2 Crafty 498 42
3 Equake 640 88
4 Gee 263 31
5 Gzip 614 36
6 Mesa 500 49
7 Art 213 29
8 Ammp 477 11
9 Mecf 543 78
10 Vortex 337 38
11 Bzip2 477 51
12 Twolf 445 59
13 Parser 200 36

Table 3. The combinations of different benchmarks

NumberofThreads Combinationsof Benchmarks Total Numbero f Instructionsinmillion

2 1+5 437
3+4 744
1+2 470
3+5 706
6+9 690
7410 376
8+11 123
12+13 382
4 1+2+3+4 743
6+7+9+10 726
248+5+11 587
9+11+12+13 712
6 1+2+3+4+5+6 725
7T+849+10+11+12 685

8 5+6+7+9+104+11+12413 703
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One assumption needs to be pointed out. When we had more than one result
of the same benchmarks in the same thread work-loads, we use the average data
of them to make it more accurate.

4.2 Simulation Results

In our experiments, we first measured the distance which is the basic of our
bypass scheme, when the branch instruction has one operand (Alpha), we record
the distance between the instruction produce this operand and the branch use
this operand. When the branch instruction has two operands (PISA), we record
the distance between the instruction produce the last operand and the branch.
And the results are illustrated in Figure 2 and Figure 3.
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Fig. 2. The distance between a conditional branch and its relied instruction of Alpha
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Both of the figures (Figure 2 and Figure 3) have similar results. That is
because (1) both Alpha and PISA ISA are RISC, their branch destinations are
determined by one or two registers, and (2) the distance has a close relationship
with the characteristic of Benchmarks instead of the instruction sets. Therefore,
to make things simple, in the rest of this paper, we focus on the study of Alpha
ISA and conduct our other experiments on SMTSIM simulator.

In the Figure 2 and Figure 3 we can find that the distance of about 15% of
branch instruction and the instruction writing the register which will be used
by this branch is more than 6. To illustrate this point more clearly, let us look
a fragment of a program:

A. LDL R1, [R2+4100]
B. MUL R1, R1, R3
C. MOV R3, R2

D. BEQ R1, Label

Instruction B writes the register R1, and the branch instruction D use the
sign of R1 to determine whether it will go to Label. The distance mentioned
above stand for the number of instructions between B and D. In this example,
the distance is the 2.

In a SMT processor, all threads use the same FU; there are many chances
that some instructions from other threads fit in the slots between instruction B
and D, so the distance of B and D will be more than 2 in this example.

Therefore, in a fetch width is 8 instruction per cycle and 4 threads environ-
ments, if other threads can provide one independent instruction to insert into
the branch and its relied instruction, then when the distance is more than 5 the
destination of this branch can be sure before it is predict. Similarly, when there
are 8 running threads, when the distance is more than 2 then this branch is sure.

To get the information precisely, we modify the SMTSIM simulator to record
the clean rate in different thread work-loads. When a branch instruction in the
decode stage of pipeline, and if the clean bit in WRT is 0, then this branch
instruction is called clean branch. The clean rate means the percentage of clean
branch instructions in the total branches. We use ICOUNT 2.8 [2] fetch police
and the results are illustrated in Figure 4.
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Fig. 4. The relation between clean rate and number of threads
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As the increasing of the number of threads, the percentage of clean branches
becomes higher and higher. That is because the in the SMT processor, some
instructions from different threads which do not affect the operands of the current
branch are inserted into the issue queue. So the distance between the branch and
its relied instructions is enlarged. And there are more chances that the operands
are ready when the branch needs to use them. And the Figure 4 shows that the
percentage is quite optimistic.

There is an exception program, mgrid. Because there are no enough branches
in this program, we get a very positive result (Figure 5). However, to be more
accuracy, we elimination this program and the average result is illustrated in
Figure 6.
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Fig. 5. The relation between clean rate and number of threads of program ”mgrid”
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Fig. 6. The relation between clean rate and number of threads on average

Figure 6 shows that when there are 2 running threads, the clean rate is lowest,
which because the clean rates of some float benchmarks decline significantly. And
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when the number of running threads is more than 2, the clean rates higher and
higher as the increasing of thread number. Particularly, when there are eight
threads, the clean rate is 19.57%. Considerably, if we eliminate such branch
instruction from mis-prediction, then the rate can be higher. For instance, when
we use a predictor which correct rate is 90%, by using this scheme in Figure 1,
we can elevate the correct rate of prediction to 91.96% (19.57%%*(1-90%)+90%).

4.3 Branch prediction miss rate

We implement our scheme with g-share and bi-mode and called g-share WRT
and bi-mode WRT respectively. And we compare the mis-prediction rate among
4K g-share, 4K g-share with WRT, and 4.5K bi-mode, and the results are as
illustrated in Figure 7.

4k gshare WRT M4k gshare [04. 5k bi-mode WRT [04. 5k bi-mode
6. 00%

5.00%

4. 00%

3. 00%

2. 00%
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0. 00%
1 2 4 6 8
No. of threads

Fig. 7. Branch prediction miss rate
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Fig. 8. Enhanced rate of prediction

As mentioned before, WRT is not a predictor. It can be used as a comple-
mentary of any predictor to improve the predict accuracy. In the Figure 7, we
know that our scheme can improve the original predictor effectively no matter
what the predictor is.
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In Figure 8, we show the relationship between the number of threads and
the enhancement of prediction. It is clear that the more running threads, the
more benefit we can get from our bypass scheme. Furthermore, when the threads
number increases from 2 to 4, the enhancement is higher than others. And this
illustrates that when there are only 2 running threads, the independent instruc-
tions are insufficient to insert between the conditional branch and the relied
instruction. And when there are 4 or 6 threads, the independent instructions
from other threads are enough to show the efficiency of our scheme. Noticeably,
when there are 8 threads, although the enhancement is higher than 6 threads,
the mis-prediction rates are also slightly higher than 6 threads. This shows that
too many threads become helpless to further reduce the mis-prediction rates.

4.4 Wrong path instruction fetch rate

@ g-share WRT M g-share [0Bi—-mode WRT [0Bi-mode
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Fig. 9. Wrong Path instruction fetch rates of the predictors on average
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Fig. 10. Enhanced rate of wrong path fetch

SMT processor can reduce the wrong path fetch rate effectively; in addition,
our scheme can enhance this rate by 6% in 4 threads and 6.7% in 8 threads
situations.
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Similarly, there is a milestone in both Figure 8 and Figure 10. In the 4 threads
situation, the improvement is most obvious. And the further increase of thread
number has little influence on the enhancement. This hints us that we can obtain
higher benefit by increase 2 threads to 4.

4.5 Processor Performance

Although the SMT can tolerance the degradation of performance caused by
mis-prediction, our scheme still improve the overall performance by 2.55% on
average. Figure 11 shows the instruction throughput of our scheme compared
with the original g-share predictor.

@ IPC gshare M IPC combine

IPC Performance

1 2 4 6 8
No. of threads

Fig. 11. Instruction throughput of our scheme and g-share predictor

5 Conclusion

In this paper, we study the distance of conditional branches and its relied in-
structions, and present a bypass mechanism for SMT processors. With the help
of WRT, the accurate of original prediction can be improved by 15% percent on
average. The implementation of our predictor is simple, and the hardware cost is
little. Execution-driven simulation results show that our predictor can be more
effective as the increasing of the number of threads.

6 Future Works

As the fetch policy become the bottleneck of IPC performance, we will do re-
search on the utilizing some unique characteristics of SMT to enhance the per-
formance overall.
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