
Prediction of Backward Branches by Pattern Detection

Muhammad Aurangzeb, Muhammad Ahmad Ghazali, Farooq Ahmed, Fakhir Shaheen
National University of Computer and Emerging Sciences, Lahore, Pakistan.

 [aurangzeb, ahmad.ghazali, mscs00-1054, mscs115]@nu.edu.pk

Abstract

A number of branch prediction schemes have been

proposed in literature. In order to improve the
prediction probability, all of them address the problem
of accurate branch prediction in various ways. In this
paper we have proposed a predictor which can
accurately predict a branch which is once registered
with it.

1. Introduction

Accurate branch prediction is essential for yielding
better performance in a pipelined processor. However,
the previously known techniques for branch prediction
have been less accurate than desired. The problem
seems to be inherent in the basic approach – the
prediction. Prediction is a guess – a speculation – that
cannot be guaranteed to be correct. No matter, how
sophisticated the technique may be, there is always the
possibility that the prediction may turn out to be false,
leading to undesirable stalls in the pipeline. In order to
give more accurate branch prediction, Vintan et al. [1]
have recently suggested an alternative to this scheme
in the form of pre-computed branches. Heil et al. [2]
proposed another approach for branch prediction that
was based on the idea of data value prediction. They
used the differences between the branch operands to
improve the branch prediction accuracy.

Based upon the two aforementioned techniques, we
have proposed a predictor named Backward Branch
Predictor (BBP) that is capable of accurately predicting
a branch instruction that is once registered with it.

Rest of this paper is organized as follows. Section 2
presents the background and briefly describes the two
techniques mentioned above. Section 3 presents the
design of BBP, while section 4 concludes the paper.

2. Background

In this section, we are going to review the two

branch prediction mechanisms, namely: Pre-computed
branches [1] and Branch Difference Predictor [2].

2.1. Pre-computed Branches

The idea of pre-computed branches is to actually

determine the outcome of the branch instead of relying
on the history information for the prediction. The
branch outcome is calculated and cached for further
use as soon as all the operands of the branches are
known. When branch instruction is actually
encountered, it is searched in the cache and if a hit
occurs, the pre-computed outcome of the branch is
used to fetch the branch target. Since, the actual branch
outcome was pre-computed, it is guaranteed that the
next instruction fetch as the branch target instruction
will be the correct one, ruling out pipeline stalls.

The pre-computed branch algorithm works using
additional hardware in form of a Prediction Table (PT)
and an extended register file named Register Unit
(RU). Both PT and RU comprise of several fields,
explained in Table 2.1.1 and 2.1.2 respectively.

Every branch instruction is initially predicted as
NOT TAKEN. Once the branch is executed for the
first time, a corresponding entry is made into the PT
and the fields in the PT are updated. For every entry in
PT, two fields PC1 and PC2 are maintained that keep
track of the last two instructions that produced the
branch operands. Next time, when a register is
updated, which happens to be one of the source
operands of a branch instruction, the corresponding
branch instruction is re-computed and the outcome is
stored in the PRED field in PT. In order to determine
whether an instruction changes the value of one of the
branch operands or not, a search is made into PT on
the Program Counter (PC) of instruction.

Table 2.1.1 Details of PT data structure

Field Name Field Description
TAG High order bits of branch instruction’s

PC
PC1, PC2 PCs of the instructions producing

branch’s operands
OPC Branch instruction’s opcode

OP1, OP2 Register names of the branch
operands

PRED Branch outcome (Taken or Not-
Taken)

LRU Least recently used field

Table 2.1.2 Details of RU data structure

Field
Name

Field Description

Value Data value stored in register
LDPC The most recent instruction label (PC)

that wrote in the register
RC Reference counter indicating number

of branch instructions stored in PT
that have this particular register as
one of the operands

Figure 2.1.1 Figure illustrating RAW hazard problem with pre-computation algorithm

for the MIPS code shown in box. R9 is computed at the end of cycle 3, where as PT
needs to be accessed at the end of cycle 2 to fetch the branch successor in cycle 3

If this search results in a match with PC1 or PC2

then the instruction updates one of the branch operands
and hence the corresponding branch is re-computed. In
order to avoid searching of PT after execution of every
instruction, a reference counter (RC) is maintained in
RU for every register. RC indicates the number of
entries in the PT, of which this particular register is
one of the operands. Thus, PT is searched only for
non-branch instructions updating registers having RC
> 0.

The above approach helps in accurately determining
the outcome of the branch. However, even the idea of
pre-computation does not promise 100 % accuracy.
The pre-computed branch algorithm can have miss-
predictions, which are basically due to the following
three reasons:

1. Every branch is initially predicted as not-taken.
This initial prediction can be wrong.

2. There can be capacity misses in the prediction
table.

3. The idea of pre-computation may not work if the
branch instruction and the corresponding operand

producer are too close in the program follow to
trigger a Read after Write (RAW) hazard.

Last of the above three reasons is of serious concern
here, because there are many instances when such kind
of situations occur. The problem is illustrated in Figure
2.1.1 for a classic five-stage pipeline. Value of R9 is
computed at the end of cycle 3, whereas PT table
needs to be accessed in cycle 2 to fetch the correct
branch successor in cycle 3. Even with some data
forwarding, stall of 1 cycle will occur. If no data
forwarding is used, then upto 3-cycle stall may occur.

One of the ways to avoid this problem is to use a
conventional predictor for such cases instead of pre-
computation scheme. For all the other cases Pre-
computation scheme can be used giving accurate
prediction except for this one. Another way to resolve
this problem is to use some sort of instruction
scheduling. However, no published work exists so far
that has shown a feasible solution to this problem in
this scheme.

2.2. Branch Difference Predictor (BDP)

Data value predictors are based on the premise that

for many branches the previous branch outcomes and
the current PC are insufficient. Therefore, these
predictors use data values to improve branch
prediction accuracy. Heil et al. [2] proposed one such
kind of predictor called Branch Difference Predictor
(BDP). Because a large number of branches depend
either on the sign of difference between the two
register values used in the branch instruction or
whether the difference is zero. Therefore, instead of
storing the data values of the branches, BDP stores the
differences between the two values.

There are three main components of BDP: Backing
predictor, Rare Event Predictor (REP) and Value
History Table (VHT). VHT stores the differences
between the values of branches. This table is indexed
by the branch PC and provides the difference history
of the two sources used in the branch instruction.
However, the number of differences to be stored can
still be very large. So, BDP stores these differences
only for rare branches and normal branches are
predicted by a traditional predictor (called Backing
predictor). The Rare Event Predictor (REP), which is a
tagged cache-like structure, is used to predict these
rare branches. The values in REP are only added when
the backing predictor mispredicts a branch. Otherwise,
if the backing predictor predicts a branch correctly
then REP is not updated. The overall structure of BDP
is shown below in Figure 2.2.1.

Figure 2.2.1 Structure of BDP [2]

REP is accessed in parallel with VHT using the
branch PC and Global Branch History (GBH). VHT is
used as a selector to select between the predictions
made by the backing predictor and REP. The value
history is compared with the Tag resulting from the
REP. If the two values are equal then the prediction
from REP is used, otherwise prediction of the backing
predictor is used. The process of accessing VHT and
REP is summarized below in Figure 2.2.2.

Access VHT and
REP with PC
and Global

Branch History

TAG == Value
History

Use prediction
of Backing
Predictor

Use prediction
of REP

No

Yes

Figure 2.2.2 Accessing VHT and REP

An entry is placed in the REP only when it correctly
predicts a branch which was mispredicted by the
backing predictor. The counters of the new entry are
placed in weakly taken or weakly not taken state
depending on whether the branch was taken or not.
This method of updating REP is shown below in
Figure 2.2.3.

Prediction of Backing
Predictor

OK! No need to
update REP

Correct

Make new entry in REP
If Branch was “Taken”

then state = “Weakly Taken”
If Branch was “Not Taken”

then state = “Weakly Not Taken”

Incorrect

Figure 2.2.3 Updating REP

3. Backward Branch Predictor (BBP)

In this section we propose the Backward Branch
Predictor (BBP). Which would work in superposition
to the conventional predictor or any other predictor
proposed in [1], [2] and [3].

3.1. Basic Design Philosophy

The location of BBP in overall predictor design is

shown in Figure 3.1.1. The proposed BBP works in
parallel with the two level conventional branch
predictor and any other special predictor like Rare
Event Predictor (REP) [2]. Whenever a branch is
encountered for the first time, by examining current PC

and the branch target address it is determined that
whether the branch is backward. The subject branch is
predicted by using the mechanism as explained in [1],
[2] and [3]. However, if it is classified as a backward
branch it is enlisted in BBP; details are explained in
the next section.

Conventional

Predictor
with Some

Special
Predictor

BBP

PC + GBH

PC

Sniffing Port

Prediction

TAG

Figure 3.1.1 Location of BBP in overall layout of
branch prediction module

If the subject branch is actually taken then BBP

determines the patterns in the variations of the two
operands in the subject branch instruction through the
sniffing port of BBP as the processor continues its
execution of the block of instructions between the
target address and the subject branch instruction. This
time also the branch is predicted like it is predicted for
the first time. These patterns are stored in BBP and the
instruction is registered into the BBP. Now, whenever
a registered branch instruction is fetched it is predicted
by BBP. If the prediction of BBP remains correct its
registration level is improved till a maximum level and
if due to one reason or the other, at any stage, the
prediction goes wrong its status is reverted back to
enlisted status. Ultimately when the backward branch
is correctly predicted as not taken the branch is vetted.
Through out the execution of the task the operands of
the branch enlisted/registered/vetted are monitored and
the moment the control comes on a branch
registered/vetted its prediction is made by BBP. By
this stage it may be evident that the design philosophy
of BBP is to get utmost prediction accuracy for loops
but the same idea may be further extended.

3.2. Detailed Layout

The detailed layout of BBP is shown in Figure

3.2.1. Once a branch is encountered for the first time
and it is determined to be a back ward branch it is
enlisted in the Pattern Table within BBP. The detailed
lay out of the Pattern Table is shown in Figure 3.2.2.
The said branch is enlisted in the Pattern Table directly
against its PC or hashed* in it.

* Here we are not concerned with bit optimization.

Pattern
Table PC

Sniffing Port

TAG

Prediction
Unit

TAG
Generator

Pattern
Detector

Prediction

Figure 3.2.1 Detailed layout of BBP

Figure 3.2.2 Layout of Pattern Table

Significance of the Status bits is shown in Figure

3.2.3. As shown, initially the status of an entry is
marked as Invalid. When a backward branch is
detected its status is changed to Enlisted. Operands and
their values at the stage of Instruction Decode** (ID)
stage of the branch instruction are stored against the
PC. Now as the control comes back while executing
the code BBP detects the pattern which the two
operands are following by sniffing the code under
execution through its Sniffing Port. When the control
comes to an enlisted instruction for the second time its
status is converted to registered and pattern detected by
the Pattern Detector is stored in the table against the
PC.

Status
(3 bits)

Status of the Corresponding
Branch Instruction

000 Invalid (Initial Status)
001 Enlisted

010 to 110 Registered (with 010 as least level
and 110 maximum level)

111 Vetted

Figure 3.2.3 Significance of Status bits

This time the prediction is made by BBP and Tag is

set by the Tag Generator. The tag will be set if the
entry’s status is either Registered or Vetted. The

** The basic MIPS processor pipeline with forwarding may be
considered.

St
at

us
 (3

 b
its

)

PC
 (≤

32
 b

its
)

O
pe

ra
nd

 1
 (5

bi

ts
)

V
al

ue
 1

 (3
2

bi
ts

)

O
pe

ra
nd

 2
 (5

bi

ts
)

V
al

ue
 2

 (3
2

bi
ts

)

Pa
tt

er
n

1

Pa
tt

er
n

2

prediction is selected by the multiplexer circuitry
shown in Fig 3.1.1. If the prediction works well its
registration level is improved*. Finally if the branch is
correctly predicted as Not Taken (NT), its status is
changed to Vetted**. Now during the execution of the
code whenever control comes to such a branch
instruction BBP is used to predict it.

The BBP as proposed above works in quite a
deterministic fashion and capable of accurately
predicting backward branches registered with it. To
further strengthen our claim we have quoted a few
examples.

3.3. Working Examples of BBP

Following are a few examples to elaborate the

above-mentioned BBP.

Example 1
Consider the following high-level code:

void Loop1(){
 long var1 = 100, var2 = 20;
 for(long x = 0; x != var1; x++){
 var2 = var2 * x;
 }
}

Following is its equivalent MIPS64 assembly
language:

 LD R1, #100 ; var1
 LD R2, #20 ; var2
 LD R3, #0 ; x
MAIN_LOOP:
 DMUL R2, R2, R3
 ADD.D R3, #1
 BNE R1, R3, MAIN_LOOP

When the branch instruction is encountered for the
first time the following entry is made in the Prediction
Table of BBP. It should be noted that Value-2 contains
the value of the Operand-2 available at the ID stage of
the branch instruction.

* Though we have proposed this scheme for simple loops yet the idea
may also be extended to complex situations by inducing artificial
intelligence in the pattern detector. And in such situations in case
prediction goes wrong, it is suggested that the status may be reverted
back to Enlisted.
** (Above note is applicable)

St
at

us

PC

O
pe

ra
nd

 1

V
al

ue
 1

O
pe

ra
nd

 2

V
al

ue
 2

Pa
tt

er
n

1

Pa
tt

er
n

2

001 PC R1 100 R3 0 - -

When the control comes to the branch instruction

for the second time the following would be the entry in
the table. Again the values are those available at ID
stage of the branch instruction. Further the Pattern
Detector has detected that the Operand-1 remains fixed
during the execution of the code and the Operand-2 is
incremented by 1. This time the tag is set and the
branch was correctly predicted as taken by BBP.

St
at

us

PC

O
pe

ra
nd

 1

V
al

ue
 1

O
pe

ra
nd

 2

V
al

ue
 2

Pa
tt

er
n

1

Pa
tt

er
n

2

010 PC R1 100 R3 1 Fixed +1

The execution of the code goes on and every time
the branch instruction is executed it is correctly
predicted by BBP. Following would be the entry for
the branch instruction when the control comes to it for
the last time.

St
at

us

PC

O
pe

ra
nd

 1

V
al

ue
 1

O
pe

ra
nd

 2

V
al

ue
 2

Pa
tt

er
n

1

Pa
tt

er
n

2

110 PC R1 100 R3 99 Fixed +1

BBP will correctly predict it as not taken and the
corresponding entry in the table would be as following.

St
at

us

PC

O
pe

ra
nd

 1

V
al

ue
 1

O
pe

ra
nd

 2

V
al

ue
 2

Pa
tt

er
n

1

Pa
tt

er
n

2

111 PC R1 100 R3 100 Fixed +1

The Sniffing Port will keep track of the two
operands and whenever the control comes on the same
branch for the next time it is directly predicted by
BBP.

Example 2
Consider the following high-level code.

void Loop2(){
 long var1 = 0, var2 = 50;
 do{ var1++;
 var2--;
 }while(var1 != var2);
}

Following is its equivalent MIPS64 assembly
language:

LD R1, #0 ; var1
 LD R2, #50 ; var2
MAIN_LOOP:
 ADD.D R1, #1
 SUB.D R2, #-1
 BNE R1, R2, MAIN_LOOP

When the branch instruction is encountered for the

first time the following entry is made in the Prediction
Table of BBP.

St
at

us

PC

O
pe

ra
nd

 1

V
al

ue
 1

O
pe

ra
nd

 2

V
al

ue
 2

Pa
tt

er
n

1

Pa
tt

er
n

2

001 PC R1 1 R2 50 - -

It should be noted that Value-2 contains the value
of the Operand-2 available at the ID stage of the
branch instruction.

When the control comes to the branch instruction
for the second time the following would be the entry in
the table. Again the values are those available at ID
stage of the branch instruction. Further the Pattern
Detector has detected that the Operand-1 incremented
by 1 during the execution of the code and the Operand-
2 is decremented by 1. This time the tag is set and the
branch was correctly predicted as taken by BBP.

St
at

us

PC

O
pe

ra
nd

 1

V
al

ue
 1

O
pe

ra
nd

 2

V
al

ue
 2

Pa
tt

er
n

1

Pa
tt

er
n

2

010 PC R1 2 R2 49 +1 -1

The execution of the code goes on and every time
the branch instruction is executed it is correctly
predicted by BBP. Following would be the entry for
the branch instruction when the control comes to it for
the last time.

St
at

us

PC

O
pe

ra
nd

 1

V
al

ue
 1

O
pe

ra
nd

 2

V
al

ue
 2

Pa
tt

er
n

1

Pa
tt

er
n

2

110 PC R1 25 R2 24 +1 -1

BBP will correctly predict it as not taken and the
corresponding entry in the table would be as following.

St
at

us

PC

O
pe

ra
nd

 1

V
al

ue
 1

O
pe

ra
nd

 2

V
al

ue
 2

Pa
tt

er
n

1

Pa
tt

er
n

2

111 PC R1 25 R2 25 +1 -1

The Sniffing Port will keep the track of the two
operands and whenever the control comes on the same
branch for the next time it is directly predicted by
BBP.

4. Conclusion

Apart from conventional branch predictors there are
many other predictors for some special events and for
multiple branches. The one proposed in this paper is
for backward branches. The proposed predictor can
work along with any of the above predictors and may
be used to accurately predict the backward branches.
Performance of the proposed detector is evident from
the motivating examples mentioned in section 3 yet
some simulation may also be performed to further
analyze its utilization. The proposed predictor may be
improved to predict any kind of branches by inducing
artificial intelligence in the pattern detector unit.

5. References

[1] L. Vintan, M. Sbera, I. Mihu, and A. Florea, “An
alternative to branch prediction: pre-computed branches”,
ACM SIGARCH Computer Architecture News, Volume 31,
Issue 3, June 2003, Pages: 20-29.

[2] Timothy H. Heil, Zak Smith, and J. E. Smith, “Improving
branch predictors by correlating on data values”,
Proceedings of the 32nd annual ACM/IEEE international
symposium on Microarchitecture, November 16-18, 1999,
Haifa, Israel, Pages: 28-37.

[3] R. Rakvic, B. Black, and J.P. Shen, “Completion time
multiple branch prediction for enhancing trace cache
performance”, Proceedings of the 27th annual international
symposium on Computer Architecture, Vancouver, Canada,
2000, Pages: 47-58.

