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Abstract 

 
A number of branch prediction schemes have been 

proposed in literature. In order to improve the 
prediction probability, all of them address the problem 
of accurate branch prediction in various ways. In this 
paper we have proposed a predictor which can 
accurately predict a branch which is once registered 
with it.  
 
 
1. Introduction 
 

Accurate branch prediction is essential for yielding 
better performance in a pipelined processor. However, 
the previously known techniques for branch prediction 
have been less accurate than desired. The problem 
seems to be inherent in the basic approach – the 
prediction. Prediction is a guess – a speculation – that 
cannot be guaranteed to be correct. No matter, how 
sophisticated the technique may be, there is always the 
possibility that the prediction may turn out to be false, 
leading to undesirable stalls in the pipeline. In order to 
give more accurate branch prediction, Vintan et al. [1] 
have recently suggested an alternative to this scheme 
in the form of pre-computed branches. Heil et al. [2] 
proposed another approach for branch prediction that 
was based on the idea of data value prediction. They 
used the differences between the branch operands to 
improve the branch prediction accuracy. 

Based upon the two aforementioned techniques, we 
have proposed a predictor named Backward Branch 
Predictor (BBP) that is capable of accurately predicting 
a branch instruction that is once registered with it.  

Rest of this paper is organized as follows. Section 2 
presents the background and briefly describes the two 
techniques mentioned above. Section 3 presents the 
design of BBP, while section 4 concludes the paper. 
 
 
 

2. Background 
 
In this section, we are going to review the two 

branch prediction mechanisms, namely: Pre-computed 
branches [1] and Branch Difference Predictor [2]. 
 
2.1. Pre-computed Branches 

 
The idea of pre-computed branches is to actually 

determine the outcome of the branch instead of relying 
on the history information for the prediction. The 
branch outcome is calculated and cached for further 
use as soon as all the operands of the branches are 
known. When branch instruction is actually 
encountered, it is searched in the cache and if a hit 
occurs, the pre-computed outcome of the branch is 
used to fetch the branch target. Since, the actual branch 
outcome was pre-computed, it is guaranteed that the 
next instruction fetch as the branch target instruction 
will be the correct one, ruling out pipeline stalls. 

The pre-computed branch algorithm works using 
additional hardware in form of a Prediction Table (PT) 
and an extended register file named Register Unit 
(RU). Both PT and RU comprise of several fields, 
explained in Table 2.1.1 and 2.1.2 respectively. 

Every branch instruction is initially predicted as 
NOT TAKEN. Once the branch is executed for the 
first time, a corresponding entry is made into the PT 
and the fields in the PT are updated. For every entry in 
PT, two fields PC1 and PC2 are maintained that keep 
track of the last two instructions that produced the 
branch operands. Next time, when a register is 
updated, which happens to be one of the source 
operands of a branch instruction, the corresponding 
branch instruction is re-computed and the outcome is 
stored in the PRED field in PT. In order to determine 
whether an instruction changes the value of one of the 
branch operands or not, a search is made into PT on 
the Program Counter (PC) of instruction. 



 

Table 2.1.1 Details of PT data structure 

Field Name Field Description 
TAG High order bits of branch instruction’s 

PC 
PC1, PC2 PCs of the instructions producing 

branch’s operands 
OPC Branch instruction’s opcode 

OP1, OP2 Register names of the branch 
operands 

PRED Branch outcome (Taken or Not-
Taken) 

LRU Least recently used field 

Table 2.1.2 Details of RU data structure 

Field 
Name 

Field Description 

Value Data value stored in register 
LDPC The most recent instruction label (PC) 

that wrote in the register 
RC Reference counter indicating number 

of branch instructions stored in PT 
that have this particular register as 
one of the operands 

 
 

 

 
Figure 2.1.1 Figure illustrating RAW hazard problem with pre-computation algorithm 

for the MIPS code shown in box. R9 is computed at the end of cycle 3, where as PT 
needs to be accessed at the end of cycle 2 to fetch the branch successor in cycle 3 

 
 
If this search results in a match with PC1 or PC2 

then the instruction updates one of the branch operands 
and hence the corresponding branch is re-computed. In 
order to avoid searching of PT after execution of every 
instruction, a reference counter (RC) is maintained in 
RU for every register. RC indicates the number of 
entries in the PT, of which this particular register is 
one of the operands. Thus, PT is searched only for 
non-branch instructions updating registers having RC 
> 0. 

The above approach helps in accurately determining 
the outcome of the branch. However, even the idea of 
pre-computation does not promise 100 % accuracy. 
The pre-computed branch algorithm can have miss-
predictions, which are basically due to the following 
three reasons: 

1. Every branch is initially predicted as not-taken. 
This initial prediction can be wrong. 

2. There can be capacity misses in the prediction 
table. 

3. The idea of pre-computation may not work if the 
branch instruction and the corresponding operand 

producer are too close in the program follow to 
trigger a Read after Write (RAW) hazard. 

Last of the above three reasons is of serious concern 
here, because there are many instances when such kind 
of situations occur. The problem is illustrated in Figure 
2.1.1 for a classic five-stage pipeline. Value of R9 is 
computed at the end of cycle 3, whereas PT table 
needs to be accessed in cycle 2 to fetch the correct 
branch successor in cycle 3. Even with some data 
forwarding, stall of 1 cycle will occur. If no data 
forwarding is used, then upto 3-cycle stall may occur. 

One of the ways to avoid this problem is to use a 
conventional predictor for such cases instead of pre-
computation scheme. For all the other cases Pre-
computation scheme can be used giving accurate 
prediction except for this one. Another way to resolve 
this problem is to use some sort of instruction 
scheduling. However, no published work exists so far 
that has shown a feasible solution to this problem in 
this scheme. 
 
 



 

2.2. Branch Difference Predictor (BDP) 
 
Data value predictors are based on the premise that 

for many branches the previous branch outcomes and 
the current PC are insufficient. Therefore, these 
predictors use data values to improve branch 
prediction accuracy. Heil et al. [2] proposed one such 
kind of predictor called Branch Difference Predictor 
(BDP). Because a large number of branches depend 
either on the sign of difference between the two 
register values used in the branch instruction or 
whether the difference is zero. Therefore, instead of 
storing the data values of the branches, BDP stores the 
differences between the two values. 

There are three main components of BDP: Backing 
predictor, Rare Event Predictor (REP) and Value 
History Table (VHT). VHT stores the differences 
between the values of branches. This table is indexed 
by the branch PC and provides the difference history 
of the two sources used in the branch instruction. 
However, the number of differences to be stored can 
still be very large. So, BDP stores these differences 
only for rare branches and normal branches are 
predicted by a traditional predictor (called Backing 
predictor). The Rare Event Predictor (REP), which is a 
tagged cache-like structure, is used to predict these 
rare branches. The values in REP are only added when 
the backing predictor mispredicts a branch. Otherwise, 
if the backing predictor predicts a branch correctly 
then REP is not updated. The overall structure of BDP 
is shown below in Figure 2.2.1. 

 
Figure 2.2.1 Structure of BDP [2] 

REP is accessed in parallel with VHT using the 
branch PC and Global Branch History (GBH). VHT is 
used as a selector to select between the predictions 
made by the backing predictor and REP. The value 
history is compared with the Tag resulting from the 
REP. If the two values are equal then the prediction 
from REP is used, otherwise prediction of the backing 
predictor is used. The process of accessing VHT and 
REP is summarized below in Figure 2.2.2. 

Access VHT and
REP with PC
and Global

Branch History

TAG == Value
History

Use prediction
of Backing
Predictor

Use prediction
of REP

No

Yes

 
Figure 2.2.2 Accessing VHT and REP 

An entry is placed in the REP only when it correctly 
predicts a branch which was mispredicted by the 
backing predictor. The counters of the new entry are 
placed in weakly taken or weakly not taken state 
depending on whether the branch was taken or not. 
This method of updating REP is shown below in 
Figure 2.2.3. 

Prediction of Backing
Predictor

OK! No need to
update REP

Correct

Make new entry in REP
If Branch was “Taken”

then state = “Weakly Taken”
If Branch was “Not Taken”

then state = “Weakly Not Taken”

Incorrect

 
Figure 2.2.3 Updating REP 

 
3. Backward Branch Predictor (BBP) 

In this section we propose the Backward Branch 
Predictor (BBP). Which would work in superposition 
to the conventional predictor or any other predictor 
proposed in [1], [2] and [3]. 
 
3.1. Basic Design Philosophy 

 
The location of BBP in overall predictor design is 

shown in Figure 3.1.1. The proposed BBP works in 
parallel with the two level conventional branch 
predictor and any other special predictor like Rare 
Event Predictor (REP) [2]. Whenever a branch is 
encountered for the first time, by examining current PC 



 

and the branch target address it is determined that 
whether the branch is backward. The subject branch is 
predicted by using the mechanism as explained in [1], 
[2] and [3]. However, if it is classified as a backward 
branch it is enlisted in BBP; details are explained in 
the next section.  

 
Conventional 

Predictor 
with Some 

Special 
Predictor 

BBP 

PC + GBH 

PC 

Sniffing Port 

Prediction

TAG  
 

Figure 3.1.1 Location of BBP in overall layout of 
branch prediction module 

 
If the subject branch is actually taken then BBP 

determines the patterns in the variations of the two 
operands in the subject branch instruction through the 
sniffing port of BBP as the processor continues its 
execution of the block of instructions between the 
target address and the subject branch instruction. This 
time also the branch is predicted like it is predicted for 
the first time. These patterns are stored in BBP and the 
instruction is registered into the BBP. Now, whenever 
a registered branch instruction is fetched it is predicted 
by BBP. If the prediction of BBP remains correct its 
registration level is improved till a maximum level and 
if due to one reason or the other, at any stage, the 
prediction goes wrong its status is reverted back to 
enlisted status. Ultimately when the backward branch 
is correctly predicted as not taken the branch is vetted. 
Through out the execution of the task the operands of 
the branch enlisted/registered/vetted are monitored and 
the moment the control comes on a branch 
registered/vetted its prediction is made by BBP. By 
this stage it may be evident that the design philosophy 
of BBP is to get utmost prediction accuracy for loops 
but the same idea may be further extended.         

 
3.2. Detailed Layout    

 
The detailed layout of BBP is shown in Figure 

3.2.1. Once a branch is encountered for the first time 
and it is determined to be a back ward branch it is 
enlisted in the Pattern Table within BBP. The detailed 
lay out of the Pattern Table is shown in Figure 3.2.2. 
The said branch is enlisted in the Pattern Table directly 
against its PC or hashed* in it.  

                                                           
* Here we are not concerned with bit optimization. 
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Figure 3.2.1 Detailed layout of BBP 

 

Figure 3.2.2 Layout of Pattern Table 
 
Significance of the Status bits is shown in Figure 

3.2.3. As shown, initially the status of an entry is 
marked as Invalid. When a backward branch is 
detected its status is changed to Enlisted. Operands and 
their values at the stage of Instruction Decode** (ID) 
stage of the branch instruction are stored against the 
PC. Now as the control comes back while executing 
the code BBP detects the pattern which the two 
operands are following by sniffing the code under 
execution through its Sniffing Port. When the control 
comes to an enlisted instruction for the second time its 
status is converted to registered and pattern detected by 
the Pattern Detector is stored in the table against the 
PC. 

 
Status 
(3 bits) 

Status of the Corresponding 
Branch Instruction 

000 Invalid (Initial Status) 
001 Enlisted 

010 to 110 Registered (with 010 as least level 
and 110 maximum level) 

111 Vetted 

Figure 3.2.3 Significance of Status bits 
 
This time the prediction is made by BBP and Tag is 

set by the Tag Generator. The tag will be set if the 
entry’s status is either Registered or Vetted. The 

                                                           
** The basic MIPS processor pipeline with forwarding may be 
considered. 
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prediction is selected by the multiplexer circuitry 
shown in Fig 3.1.1. If the prediction works well its 
registration level is improved*. Finally if the branch is 
correctly predicted as Not Taken (NT), its status is 
changed to Vetted**. Now during the execution of the 
code whenever control comes to such a branch 
instruction BBP is used to predict it. 

The BBP as proposed above works in quite a 
deterministic fashion and capable of accurately 
predicting backward branches registered with it. To 
further strengthen our claim we have quoted a few 
examples. 
 
3.3. Working Examples of BBP  

 
Following are a few examples to elaborate the 

above-mentioned BBP. 
 

Example 1  
Consider the following high-level code: 
 
void Loop1(){ 
 long var1 = 100, var2 = 20; 
 for(long x = 0; x != var1; x++){ 
  var2 = var2 * x; 
 } 
} 
 
Following is its equivalent MIPS64 assembly 
language: 
 
 LD R1, #100 ; var1 
 LD R2, #20 ; var2 
 LD R3, #0 ; x 
MAIN_LOOP:  
 DMUL R2, R2, R3 
 ADD.D R3, #1 
 BNE R1, R3, MAIN_LOOP 
  

When the branch instruction is encountered for the 
first time the following entry is made in the Prediction 
Table of BBP. It should be noted that Value-2 contains 
the value of the Operand-2 available at the ID stage of 
the branch instruction. 

 
 

                                                           
* Though we have proposed this scheme for simple loops yet the idea 
may also be extended to complex situations by inducing artificial 
intelligence in the pattern detector. And in such situations in case 
prediction goes wrong, it is suggested that the status may be reverted 
back to Enlisted. 
** (Above note is applicable) 
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001 PC R1 100 R3 0 - - 
 
When the control comes to the branch instruction 

for the second time the following would be the entry in 
the table. Again the values are those available at ID 
stage of the branch instruction. Further the Pattern 
Detector has detected that the Operand-1 remains fixed 
during the execution of the code and the Operand-2 is 
incremented by 1. This time the tag is set and the 
branch was correctly predicted as taken by BBP. 
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010 PC R1 100 R3 1 Fixed +1 
 

The execution of the code goes on and every time 
the branch instruction is executed it is correctly 
predicted by BBP. Following would be the entry for 
the branch instruction when the control comes to it for 
the last time. 
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110 PC R1 100 R3 99 Fixed +1 
 

BBP will correctly predict it as not taken and the 
corresponding entry in the table would be as following. 
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111 PC R1 100 R3 100 Fixed +1 
 

The Sniffing Port will keep track of the two 
operands and whenever the control comes on the same 
branch for the next time it is directly predicted by 
BBP. 
 
 
 
 



 

Example 2  
Consider the following high-level code. 

void Loop2(){ 
 long var1 = 0, var2 = 50; 
 do{ var1++; 
  var2--; 
 }while(var1 != var2); 
} 
 

Following is its equivalent MIPS64 assembly 
language: 

LD R1, #0 ; var1 
 LD R2, #50 ; var2 
MAIN_LOOP:  
 ADD.D R1, #1 
 SUB.D R2, #-1 
 BNE R1, R2, MAIN_LOOP 

 
When the branch instruction is encountered for the 

first time the following entry is made in the Prediction 
Table of BBP. 
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001 PC R1 1 R2 50 - - 
 

It should be noted that Value-2 contains the value 
of the Operand-2 available at the ID stage of the 
branch instruction. 

When the control comes to the branch instruction 
for the second time the following would be the entry in 
the table. Again the values are those available at ID 
stage of the branch instruction. Further the Pattern 
Detector has detected that the Operand-1 incremented 
by 1 during the execution of the code and the Operand-
2 is decremented by 1. This time the tag is set and the 
branch was correctly predicted as taken by BBP.  
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010 PC R1 2 R2 49 +1 -1 
 

The execution of the code goes on and every time 
the branch instruction is executed it is correctly 
predicted by BBP. Following would be the entry for 
the branch instruction when the control comes to it for 
the last time. 
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110 PC R1 25 R2 24 +1 -1 

BBP will correctly predict it as not taken and the 
corresponding entry in the table would be as following. 
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111 PC R1 25 R2 25 +1 -1 

The Sniffing Port will keep the track of the two 
operands and whenever the control comes on the same 
branch for the next time it is directly predicted by 
BBP. 
 
4. Conclusion 
 

Apart from conventional branch predictors there are 
many other predictors for some special events and for 
multiple branches. The one proposed in this paper is 
for backward branches. The proposed predictor can 
work along with any of the above predictors and may 
be used to accurately predict the backward branches. 
Performance of the proposed detector is evident from 
the motivating examples mentioned in section 3 yet 
some simulation may also be performed to further 
analyze its utilization.  The proposed predictor may be 
improved to predict any kind of branches by inducing 
artificial intelligence in the pattern detector unit. 
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